Performance Prediction of a Hard-Chine Planing Hull by Employing Different CFD Models

This paper presents CFD (Computational Fluid Dynamics) simulations of the performance of a planing hull in a calm-water condition, aiming to evaluate similarities and differences between results of different CFD models. The key differences between these models are the ways they use to compute the tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2021-05, Vol.9 (5), p.481, Article 481
Hauptverfasser: Hosseini, Azim, Tavakoli, Sasan, Dashtimanesh, Abbas, Sahoo, Prasanta K., Korgesaar, Mihkel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents CFD (Computational Fluid Dynamics) simulations of the performance of a planing hull in a calm-water condition, aiming to evaluate similarities and differences between results of different CFD models. The key differences between these models are the ways they use to compute the turbulent flow and simulate the motion of the vessel. The planing motion of a vessel on water leads to a strong turbulent fluid flow motion, and the movement of the vessel from its initial position can be relatively significant, which makes the simulation of the problem challenging. Two different frameworks including k-epsilon and DES (Detached Eddy Simulation) methods are employed to model the turbulence behavior of the fluid motion of the air-water flow around the boat. Vertical motions of the rigid solid body in the fluid domain, which eventually converge to steady linear and angular displacements, are numerically modeled by using two approaches, including morphing and overset techniques. All simulations are performed with a similar mesh structure which allows us to evaluate the differences between results of the applied mesh motions in terms of computation of turbulent air-water flow around the vessel. Through quantitative comparisons, the morphing technique has been seen to result in smaller errors in the prediction of the running trim angle at high speeds. Numerical observations suggest that a DES model can modify the accuracy of the morphing mesh simulations in the prediction of the trim angle, especially at high-speeds. The DES model has been seen to increase the accuracy of the model in the computation of the resistance of the vessel in a high-speed operation, as well. This better level of accuracy in the prediction of resistance is a result of the calculation of the turbulent eddies emerging in the water flow in the downstream zone, which are not captured when a k-epsilon framework is employed. The morphing approach itself can also increase the accuracy of the resistance prediction. The overset method, however, overpredicts the resistance force. This overprediction is caused by the larger vorticity, computed in the direction of the waves, generated under the bow of the vessel. Furthermore, the overset technique is observed to result in larger hydrodynamic pressure on the stagnation line, which is linked to the greater trim angle, predicted by this approach. The DES model is seen to result in extra-damping of the second and third crests of transom waves a
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse9050481