Amplification-free Detection of Cytomegalovirus miRNA Using a Modification-free Surface Plasmon Resonance Biosensor

Cytomegalovirus (CMV) is the most frequent cause of congenital infection worldwide; congenital CMV may lead to significant mortality, morbidity, or long-term sequelae, such as sensorineural hearing loss. The current study presents a newly designed surface plasmon resonance (SPR) biosensor for CMV-sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-06, Vol.93 (22), p.8002-8009
Hauptverfasser: Chang, Ying-Feng, Chou, Yi-Te, Cheng, Chia-Yu, Hsu, Jen-Fu, Su, Li-Chen, Ho, Ja-an Annie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cytomegalovirus (CMV) is the most frequent cause of congenital infection worldwide; congenital CMV may lead to significant mortality, morbidity, or long-term sequelae, such as sensorineural hearing loss. The current study presents a newly designed surface plasmon resonance (SPR) biosensor for CMV-specific microRNAs that does not involve extra care for receptor immobilization or treatment to prevent fouling on bare gold surfaces. The modification-free approach, which utilizes a poly-adenine [poly­(A)]–Au interaction, exhibited a high affinity that was comparable to that of the gold–sulfur (Au–S) interaction. In addition, magnetic nanoparticles (MNPs) were used to separate the analyte from complex sample matrixes that significantly reduced nonspecific adsorption. Moreover, the MNPs also played an important role in SPR signal amplification due to the binding-induced change in the refractive index. Our SPR biosensing platform was used successfully for the multi-detection of the microRNAs, UL22A-5p, and UL112-3p, which were associated with CMV. Our SPR biosensor offered the detection limits of 108 fM and 24 fM for UL22A-5p and UL112-3p, respectively, with an R 2 of 0.9661 and 0.9985, respectively. The precision of this biosensor has an acceptable CV (coefficient of variation) value of
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c01093