Provision of rapid and specific ex vivo diagnosis of central nervous system lymphoma from rodent xenograft biopsies by a fluorescent aptamer
OBJECTIVE Differentiating central nervous system (CNS) lymphoma from other intracranial malignancies remains a clinical challenge in surgical neuro-oncology. Advances in clinical fluorescence imaging contrast agents and devices may mitigate this challenge. Aptamers are a class of nanomolecules engin...
Gespeichert in:
Veröffentlicht in: | Journal of neurosurgery 2021-06, Vol.134 (6), p.1783-1790 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | OBJECTIVE Differentiating central nervous system (CNS) lymphoma from other intracranial malignancies remains a clinical challenge in surgical neuro-oncology. Advances in clinical fluorescence imaging contrast agents and devices may mitigate this challenge. Aptamers are a class of nanomolecules engineered to bind cellular targets with antibody like specificity in a fraction of the staining time. Here, the authors determine if immediate ex vivo fluorescence imaging with a lymphoma-specific aptamer can rapidly and specifically diagnose xenografted orthotopic human CNS lymphoma at the time of biopsy.
METHODS The authors synthesized a fluorescent CNS lymphoma-specific aptamer by conjugating a lymphoma specific aptamer with Alexa Fluor 488 (TD05-488). They modified human U251 glioma cells and Ramos lymphoma cells with a lentivirus for constitutive expression of red fluorescent protein and implanted them intracranially into athymic nude mice. Three to 4 weeks postimplantation, acute slices (biopsies, n = 28) from the xenografts were collected, placed in aptamer solution, and imaged with a Zeiss fluorescence microscope. Three aptamer staining concentrations (0.3, 1.0, and 3.0 mM) and three staining times (5, 10, and 20 minutes) followed by a 1-minute wash were tested. A file of randomly selected images was distributed to neurosurgeons and neuropathologists, and their ability to distinguish CNS lymphoma from negative controls was assessed.
RESULTS The three staining times and concentrations of TD05-488 were tested to determine the diagnostic accuracy of CNS lymphoma within a frozen section time frame. An 11-minute staining protocol with 1.0-mM TD05-488 was most efficient, labeling 77% of positive control lymphoma cells and less than 1% of negative control glioma cells (p < 0.001). This protocol permitted clinicians to positively identify all positive control lymphoma images without misdiagnosing negative control images from astrocytoma and normal brain.
CONCLUSIONS Ex vivo fluorescence imaging is an emerging technique for generating rapid histopathological diagno- ses. Ex vivo imaging with a novel aptamer-based fluorescent nanomolecule could provide an intraoperative tumor -spe- cific diagnosis of CNS lymphoma within 11 minutes of biopsy. Neurosurgeons and neuropathologists interpreted images generated with this molecular probe with high sensitivity and specificity. Clinical application of TD05-488 may permit specific intraoperative diagnosis of CNS lymphoma in a f |
---|---|
ISSN: | 0022-3085 1933-0693 1933-0693 |
DOI: | 10.3171/2020.4.JNS192476 |