Research and Prediction of Wettability of Irregular Square Column Structure on Polymethyl Methacrylate (PMMA) Surface Prepared by Femtosecond Laser
Based on the contact angle prediction model of a traditional square column structure, the prediction models for wettability of a parallelogram square column structure (PSCS) on polymethyl methacrylate (PMMA) surface prepared by femtosecond laser were established. An experiment was conducted to analy...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2021-05, Vol.11 (5), p.529, Article 529 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the contact angle prediction model of a traditional square column structure, the prediction models for wettability of a parallelogram square column structure (PSCS) on polymethyl methacrylate (PMMA) surface prepared by femtosecond laser were established. An experiment was conducted to analyze the rationality of the established complete wetting model and incomplete wetting model. It was found that the incomplete wetting prediction model of the square column structure was more in line with the actual situation. For PSCS, the length of both the long and short sides of the boss and the width of the groove exerted an impact on the contact angle prediction results. Under the condition that the length of the long and short sides of the boss remained unchanged and the groove width increased, the contact angle increased under complete wetting and incomplete wetting. In contrast, under the condition that the long side length of the boss and the groove width remained unchanged and the short side length of the boss increased, the contact angle increased under complete wetting but decreased under incomplete wetting. The maximum contact angle reached 135.65 degrees, indicating that PSCS on PMMA surface enhanced the surface hydrophobicity of the material. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings11050529 |