Heteroatom (N, S) Co-Doped CNTs in the Phenol Oxidation by Catalytic Wet Air Oxidation

The N, S-co-doping of commercial carbon nanotubes (CNTs) was performed by a solvent-free mechanothermal approach using thiourea. CNTs were mixed with the N, S-dual precursor in a ball-milling apparatus, and further thermally treated under inert atmosphere between 600 and 1000 degrees C. The influenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2021-05, Vol.11 (5), p.578, Article 578
Hauptverfasser: Rocha, Raquel P., Soares, Olivia Salome G. P., Orfao, Jose J. M., Pereira, Manuel Fernando R., Figueiredo, Jose L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The N, S-co-doping of commercial carbon nanotubes (CNTs) was performed by a solvent-free mechanothermal approach using thiourea. CNTs were mixed with the N, S-dual precursor in a ball-milling apparatus, and further thermally treated under inert atmosphere between 600 and 1000 degrees C. The influence of the temperature applied during the thermal procedure was investigated. Textural properties of the materials were not significantly affected either by the mechanical step or by the heating phase. Concerning surface chemistry, the developed methodology allowed the incorporation of N (up to 1.43%) and S (up to 1.3%), distributed by pyridinic (N6), pyrrolic (N5), and quaternary N (NQ) groups, and C-S-, C-S-O, and sulphate functionalities. Catalytic activities of the N, S-doped CNTs were evaluated for the catalytic wet air oxidation (CWAO) of phenol in a batch mode. Although the samples revealed a similar catalytic activity for phenol degradation, a higher total organic carbon removal (60%) was observed using the sample thermally treated at 900 degrees C. The improved catalytic activity of this sample was attributed to the presence of N6, NQ, and thiophenic groups. This sample was further tested in the oxidation of phenol under a continuous mode, at around 30% of conversion being achieved in the steady-state.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal11050578