On a class of semilinear nonclassical fractional wave equations with logarithmic nonlinearity

In this paper, we consider the initial boundary value problem for time‐fractional subdiffusive equations with Caputo derivative. Our problem has many applications in population dynamics. The source function is given in the logarithmic form. We examine the existence, uniqueness of local solutions, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-09, Vol.44 (14), p.11022-11045
Hauptverfasser: Vo Van, Au, Thi, Kim Van Ho, Nguyen, Anh Tuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the initial boundary value problem for time‐fractional subdiffusive equations with Caputo derivative. Our problem has many applications in population dynamics. The source function is given in the logarithmic form. We examine the existence, uniqueness of local solutions, and their ability to continue to a maximal interval of existence. The main tool and analysis here are of applying some Sobolev embedding and some fixed point theorems.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.7466