Limit Shapes for Gibbs Partitions of Sets

This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2021-05, Vol.183 (2), Article 22
Hauptverfasser: Fatkullin, Ibrahim, Xue, Jianfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mild monotonicity assumptions on the energy function, we derive all possible limit shapes arising from different asymptotic behaviors of the energy, and also compute local limit shape profiles for cases in which the limit shape is a step function.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-021-02756-8