Assessing Age-Related Gray Matter Differences in Young Adults with Voxel-Based Morphometry: The Effect of Field Strengths
Knowing the patterns of brain differences with age in the young population could lead to a better understanding of the causes of certain psychiatric disorders; however, relevant information is insufficient. Here, a pattern of regional gray matter (GM) that changed with age in a young cohort aged 20-...
Gespeichert in:
Veröffentlicht in: | Brain sciences 2021-03, Vol.11 (4), p.447, Article 447 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Knowing the patterns of brain differences with age in the young population could lead to a better understanding of the causes of certain psychiatric disorders; however, relevant information is insufficient. Here, a pattern of regional gray matter (GM) that changed with age in a young cohort aged 20-30 years was provided. Extending from previous age studies, all participants were imaged at both 1.5 T and 3 T to address the question of how far the field strength influences results. Fifty-nine young participants aged 20-30 years were scanned at both 1.5 T and 3 T. Voxel-based morphometry (VBM) was used to estimate the GM volume. Some brain regions showed a significant field strength-dependent difference in GM volume. VBM uncovered a significantly age-related increase in the GM volume in the left visual-associated area at 3 T, which was not detected at 1.5 T. In addition, voxels at 1.5 T that revealed a significant age-related reduction in the GM volume were found in the right cerebellum. In conclusion, age-related differences in human brain morphology could even be detected in a young cohort aged 20-30 years; however, the results varied across field strengths. Thus, field strength should be considered an important factor when comparing age-specific brain differences across studies. |
---|---|
ISSN: | 2076-3425 2076-3425 |
DOI: | 10.3390/brainsci11040447 |