Designing the Next Generation of Vaccines: Relevance for Future Pandemics

The development of vaccines is one of the greatest medical interventions in the history of global infectious diseases and has contributed to the annual saving of at least 2 to 3 million lives worldwide. However, many diseases are not preventable through currently available vaccines, and the potentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mBio 2020-12, Vol.11 (6), Article 02616
Hauptverfasser: Dominguez-Andres, Jorge, van Crevel, Reinout, Divangahi, Maziar, Netea, Mihai G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of vaccines is one of the greatest medical interventions in the history of global infectious diseases and has contributed to the annual saving of at least 2 to 3 million lives worldwide. However, many diseases are not preventable through currently available vaccines, and the potential of modulating the immune response during vaccination has not been fully exploited. The first golden age of vaccines was based on the germ theory and the use of live, attenuated, inactivated pathogens or toxins. New strategies and formulations (e.g., adjuvants) with an immunomodulatory capacity to enhance the protective qualities and duration of vaccines have been incompletely exploited. These strategies can prevent disease and improve protection against infectious diseases, modulate the course of some non-communicable diseases, and increase the immune responses of patients at a high risk of infection, such as the elderly or immunocompromised patients. In this minireview, we focus on how metabolic and epigenetic modulators can amplify and enhance the function of immunity in a given vaccine. We propose the term "amplifier" for such additives, and we pose that future vaccines will have three components: antigen, adjuvant, and amplifier.
ISSN:2150-7511
2161-2129
2150-7511
DOI:10.1128/mBio.02616-20