Sobolev Orthogonal Polynomials on the Sierpinski Gasket

We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket ( SG ), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2021-06, Vol.27 (3), Article 38
Hauptverfasser: Jiang, Qingxuan, Lan, Tian, Okoudjou, Kasso A., Strichartz, Robert S., Sule, Shashank, Venkat, Sreeram, Wang, Xiaoduo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 27
creator Jiang, Qingxuan
Lan, Tian
Okoudjou, Kasso A.
Strichartz, Robert S.
Sule, Shashank
Venkat, Sreeram
Wang, Xiaoduo
description We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket ( SG ), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their L 2 , L ∞ , and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.
doi_str_mv 10.1007/s00041-021-09819-0
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000640782000001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718414097</galeid><sourcerecordid>A718414097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-24f3d7e8cfd9530e439e6c02050f6fb90ddbf59447afddb9aef261ce25d1136b3</originalsourceid><addsrcrecordid>eNqNkE1PHSEUhiemTbS2f6CrSbo0owcYZoalubFqYqKJdk0Y5nBF58ItcG389z12jO4aIYQTeB4-3qr6zuCYAfQnGQBa1gCnoQamGtirDpgUrJGDZJ-ohk5R3an96kvOD0Ck6MVB1d_GMc74VF-nch_XMZi5vonzc4gbb-Zcx1CXe6xvPaatD_nR1-cmP2L5Wn12tI_fXufD6tfPs7vVRXN1fX65Or1qrJBDaXjrxNTjYN2kpABshcLOAgcJrnOjgmkanVRt2xtHpTLoeMcscjkxJrpRHFY_lnO3Kf7eYS76Ie4SvTJrLhndAUpwoo4Xam1m1D64WJKx1CfceBsDOk_rpz0bWtaC6kngi2BTzDmh09vkNyY9awb6JVG9JKopJ_0vUQ0kDYv0B8fosvUYLL6JxHct9AOHl8ZWvpjiY1jFXSikHn1cJVosdCYirDG9f_o_z_sLuUiYxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513580932</pqid></control><display><type>article</type><title>Sobolev Orthogonal Polynomials on the Sierpinski Gasket</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Jiang, Qingxuan ; Lan, Tian ; Okoudjou, Kasso A. ; Strichartz, Robert S. ; Sule, Shashank ; Venkat, Sreeram ; Wang, Xiaoduo</creator><creatorcontrib>Jiang, Qingxuan ; Lan, Tian ; Okoudjou, Kasso A. ; Strichartz, Robert S. ; Sule, Shashank ; Venkat, Sreeram ; Wang, Xiaoduo</creatorcontrib><description>We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket ( SG ), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their L 2 , L ∞ , and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-021-09819-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Asymptotic properties ; Fourier Analysis ; Harmonic Analysis on Combinatorial Graphs ; Interpolation ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics, Applied ; Norms ; Partial Differential Equations ; Physical Sciences ; Polynomials ; Quadratures ; Science &amp; Technology ; Signal,Image and Speech Processing ; Software</subject><ispartof>The Journal of fourier analysis and applications, 2021-06, Vol.27 (3), Article 38</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000640782000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c358t-24f3d7e8cfd9530e439e6c02050f6fb90ddbf59447afddb9aef261ce25d1136b3</citedby><cites>FETCH-LOGICAL-c358t-24f3d7e8cfd9530e439e6c02050f6fb90ddbf59447afddb9aef261ce25d1136b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-021-09819-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-021-09819-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Jiang, Qingxuan</creatorcontrib><creatorcontrib>Lan, Tian</creatorcontrib><creatorcontrib>Okoudjou, Kasso A.</creatorcontrib><creatorcontrib>Strichartz, Robert S.</creatorcontrib><creatorcontrib>Sule, Shashank</creatorcontrib><creatorcontrib>Venkat, Sreeram</creatorcontrib><creatorcontrib>Wang, Xiaoduo</creatorcontrib><title>Sobolev Orthogonal Polynomials on the Sierpinski Gasket</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><addtitle>J FOURIER ANAL APPL</addtitle><description>We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket ( SG ), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their L 2 , L ∞ , and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Asymptotic properties</subject><subject>Fourier Analysis</subject><subject>Harmonic Analysis on Combinatorial Graphs</subject><subject>Interpolation</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics, Applied</subject><subject>Norms</subject><subject>Partial Differential Equations</subject><subject>Physical Sciences</subject><subject>Polynomials</subject><subject>Quadratures</subject><subject>Science &amp; Technology</subject><subject>Signal,Image and Speech Processing</subject><subject>Software</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1PHSEUhiemTbS2f6CrSbo0owcYZoalubFqYqKJdk0Y5nBF58ItcG389z12jO4aIYQTeB4-3qr6zuCYAfQnGQBa1gCnoQamGtirDpgUrJGDZJ-ohk5R3an96kvOD0Ck6MVB1d_GMc74VF-nch_XMZi5vonzc4gbb-Zcx1CXe6xvPaatD_nR1-cmP2L5Wn12tI_fXufD6tfPs7vVRXN1fX65Or1qrJBDaXjrxNTjYN2kpABshcLOAgcJrnOjgmkanVRt2xtHpTLoeMcscjkxJrpRHFY_lnO3Kf7eYS76Ie4SvTJrLhndAUpwoo4Xam1m1D64WJKx1CfceBsDOk_rpz0bWtaC6kngi2BTzDmh09vkNyY9awb6JVG9JKopJ_0vUQ0kDYv0B8fosvUYLL6JxHct9AOHl8ZWvpjiY1jFXSikHn1cJVosdCYirDG9f_o_z_sLuUiYxw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Jiang, Qingxuan</creator><creator>Lan, Tian</creator><creator>Okoudjou, Kasso A.</creator><creator>Strichartz, Robert S.</creator><creator>Sule, Shashank</creator><creator>Venkat, Sreeram</creator><creator>Wang, Xiaoduo</creator><general>Springer US</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Sobolev Orthogonal Polynomials on the Sierpinski Gasket</title><author>Jiang, Qingxuan ; Lan, Tian ; Okoudjou, Kasso A. ; Strichartz, Robert S. ; Sule, Shashank ; Venkat, Sreeram ; Wang, Xiaoduo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-24f3d7e8cfd9530e439e6c02050f6fb90ddbf59447afddb9aef261ce25d1136b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Asymptotic properties</topic><topic>Fourier Analysis</topic><topic>Harmonic Analysis on Combinatorial Graphs</topic><topic>Interpolation</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics, Applied</topic><topic>Norms</topic><topic>Partial Differential Equations</topic><topic>Physical Sciences</topic><topic>Polynomials</topic><topic>Quadratures</topic><topic>Science &amp; Technology</topic><topic>Signal,Image and Speech Processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Qingxuan</creatorcontrib><creatorcontrib>Lan, Tian</creatorcontrib><creatorcontrib>Okoudjou, Kasso A.</creatorcontrib><creatorcontrib>Strichartz, Robert S.</creatorcontrib><creatorcontrib>Sule, Shashank</creatorcontrib><creatorcontrib>Venkat, Sreeram</creatorcontrib><creatorcontrib>Wang, Xiaoduo</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Qingxuan</au><au>Lan, Tian</au><au>Okoudjou, Kasso A.</au><au>Strichartz, Robert S.</au><au>Sule, Shashank</au><au>Venkat, Sreeram</au><au>Wang, Xiaoduo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sobolev Orthogonal Polynomials on the Sierpinski Gasket</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><stitle>J FOURIER ANAL APPL</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>27</volume><issue>3</issue><artnum>38</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket ( SG ), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their L 2 , L ∞ , and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-021-09819-0</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2021-06, Vol.27 (3), Article 38
issn 1069-5869
1531-5851
language eng
recordid cdi_webofscience_primary_000640782000001
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Abstract Harmonic Analysis
Approximations and Expansions
Asymptotic properties
Fourier Analysis
Harmonic Analysis on Combinatorial Graphs
Interpolation
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics, Applied
Norms
Partial Differential Equations
Physical Sciences
Polynomials
Quadratures
Science & Technology
Signal,Image and Speech Processing
Software
title Sobolev Orthogonal Polynomials on the Sierpinski Gasket
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sobolev%20Orthogonal%20Polynomials%20on%20the%20Sierpinski%20Gasket&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Jiang,%20Qingxuan&rft.date=2021-06-01&rft.volume=27&rft.issue=3&rft.artnum=38&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-021-09819-0&rft_dat=%3Cgale_webof%3EA718414097%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513580932&rft_id=info:pmid/&rft_galeid=A718414097&rfr_iscdi=true