Sobolev Orthogonal Polynomials on the Sierpinski Gasket
We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket ( SG ), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG usin...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2021-06, Vol.27 (3), Article 38 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket (
SG
), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on
SG
using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their
L
2
,
L
∞
, and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-021-09819-0 |