Sobolev Orthogonal Polynomials on the Sierpinski Gasket

We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket ( SG ), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2021-06, Vol.27 (3), Article 38
Hauptverfasser: Jiang, Qingxuan, Lan, Tian, Okoudjou, Kasso A., Strichartz, Robert S., Sule, Shashank, Venkat, Sreeram, Wang, Xiaoduo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket ( SG ), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their L 2 , L ∞ , and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-021-09819-0