Plasminogen activator inhibitor type-1 is a negative regulator of hematopoietic regeneration in the adipocyte-rich bone marrow microenvironment

Bone marrow adipocytes (BMAs) have recently been recognized as a niche component with a suppressive function. Obese individuals with abundant BMAs exhibit impaired hematopoietic regeneration after hematopoietic stem cell transplantation (HSCT). We hypothesized that plasminogen activator inhibitor ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2021-06, Vol.557, p.180-186
Hauptverfasser: Harada, Kaito, Yahata, Takashi, Onizuka, Makoto, Ibrahim, Abd Aziz, Kikkawa, Eri, Miyata, Toshio, Ando, Kiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bone marrow adipocytes (BMAs) have recently been recognized as a niche component with a suppressive function. Obese individuals with abundant BMAs exhibit impaired hematopoietic regeneration after hematopoietic stem cell transplantation (HSCT). We hypothesized that plasminogen activator inhibitor type-1 (PAI-1), an adipokine that regulates the fibrinolytic system, contributes to impaired hematopoiesis in bone marrow (BM) microenvironment with abundant BMAs. We demonstrated that BMAs differentiated in vitro could secrete PAI-1 and were positive for PAI-1 in vivo. In addition, the abundance of BMAs was associated with high levels of PAI-1 expression. The BMA-rich microenvironment exhibited impaired hematopoietic regeneration after HSCT when compared with a BMA-less microenvironment. The impaired hematopoietic regeneration in BMA-rich microenvironment was significantly alleviated by PAI-1 knockout or PAI-1 inhibitor treatment. Obese mice with abundant BMAs, compared with normal-weight mice, exhibited higher bone marrow PAI-1 concentrations, increased fibrinolytic system suppression, and lower stem cell factor (SCF) concentrations after HSCT. PAI-1 inhibitor administration significantly activated the fibrinolytic system in obese mice, contributing to the higher SCF concentration. Moreover, PAI-1 inhibitor treatment significantly alleviated the impaired hematopoietic regeneration in obese mice both after 5-fluorouracil injection and HSCT. These results indicate that PAI-1 hinders hematopoietic regeneration in BMA-rich microenvironments. The blockade of PAI-1 activity could be a novel therapeutic means of facilitating hematopoietic reconstitution in BMA-rich patients. [Display omitted] •Bone marrow (BM) adipocytes produce plasminogen activator inhibitor type-1 (PAI-1).•PAI-1 inhibits the fibrinolytic system in the adipocyte-rich BM.•The blockade of PAI-1 facilitates hematopoietic recovery in the adipocyte-rich BM.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2021.04.017