Diffusion of Shape Stabilized PEG-SiO2 as a Driver for Producing Thermoregulating Facing Bricks

A novel form-stable phase-change material (PCM) based on facing bricks was developed by incorporating thermoregulating PEG-SiO2, synthetized by sol-gel method and based on polyethylene glycol as phase-change material and silica as stabilizer compound. The PEG-SiO2 in its liquid form (sol) is firstly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-03, Vol.14 (6), p.1395, Article 1395
Hauptverfasser: Serrano, Angel, Borreguero, Ana M., Iglesias, Isabel, Acosta, Anselmo, Rodriguez, Juan F., Carmona, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel form-stable phase-change material (PCM) based on facing bricks was developed by incorporating thermoregulating PEG-SiO2, synthetized by sol-gel method and based on polyethylene glycol as phase-change material and silica as stabilizer compound. The PEG-SiO2 in its liquid form (sol) is firstly adsorbed inside the porous brick and lastly stabilized (gel) by controlling its gelation time, obtaining form-stable PCMs with PEG-SiO2 contents within 15-110 wt.%. Kinetic adsorption curves of the sol into bricks having different porosities as well as maximum adsorption capacities were obtained. The effective diffusion coefficients (D-eff) were estimated by means of Fick's second law, it being possible to predict the adsorption of sol PEG-SiO2 by the brick as function of its porosity and the free diffusion coefficient. Finally, form-stable PCMs demonstrated an improvement in their thermal energy storage capacity (up to 338%), these materials being capable of buffering the indoor temperature during an entire operational day
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14061395