Hyperdescent and étale K-theory

We study the étale sheafification of algebraic K -theory, called étale K -theory. Our main results show that étale K -theory is very close to a noncommutative invariant called Selmer K -theory, which is defined at the level of categories. Consequently, we show that étale K -theory has surprisingly w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2021-09, Vol.225 (3), p.981-1076
Hauptverfasser: Clausen, Dustin, Mathew, Akhil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the étale sheafification of algebraic K -theory, called étale K -theory. Our main results show that étale K -theory is very close to a noncommutative invariant called Selmer K -theory, which is defined at the level of categories. Consequently, we show that étale K -theory has surprisingly well-behaved properties, integrally and without finiteness assumptions. A key theoretical ingredient is the distinction, which we investigate in detail, between sheaves and hypersheaves of spectra on étale sites.
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-021-01043-3