Hyperdescent and étale K-theory
We study the étale sheafification of algebraic K -theory, called étale K -theory. Our main results show that étale K -theory is very close to a noncommutative invariant called Selmer K -theory, which is defined at the level of categories. Consequently, we show that étale K -theory has surprisingly w...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2021-09, Vol.225 (3), p.981-1076 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the étale sheafification of algebraic
K
-theory, called étale
K
-theory. Our main results show that étale
K
-theory is very close to a noncommutative invariant called Selmer
K
-theory, which is defined at the level of categories. Consequently, we show that étale
K
-theory has surprisingly well-behaved properties, integrally and without finiteness assumptions. A key theoretical ingredient is the distinction, which we investigate in detail, between sheaves and hypersheaves of spectra on étale sites. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-021-01043-3 |