Yang-Baxter R-operators for osp superalgebras
We study Yang-Baxter equations with orthosymplectic supersymmetry. We extend a new approach of the construction of the spinor and metaplectic Rˆ-operators with orthogonal and symplectic symmetries to the supersymmetric case of orthosymplectic symmetry. In this approach the orthosymplectic Rˆ-operato...
Gespeichert in:
Veröffentlicht in: | Nuclear physics. B 2021-04, Vol.965, p.115355, Article 115355 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Yang-Baxter equations with orthosymplectic supersymmetry. We extend a new approach of the construction of the spinor and metaplectic Rˆ-operators with orthogonal and symplectic symmetries to the supersymmetric case of orthosymplectic symmetry. In this approach the orthosymplectic Rˆ-operator is given by the ratio of two operator valued Euler Gamma-functions. We illustrate this approach by calculating such Rˆ operators in explicit form for special cases of the osp(n|2m) algebra, in particular for a few low-rank cases. We also propose a novel, simpler and more elegant, derivation of the Shankar-Witten type formula for the osp invariant Rˆ-operator and demonstrate the equivalence of the previous approach to the new one in the general case of the Rˆ-operator invariant under the action of the osp(n|2m) algebra. |
---|---|
ISSN: | 0550-3213 1873-1562 |
DOI: | 10.1016/j.nuclphysb.2021.115355 |