Synergies and Entanglement in Secondary Cell Wall Development and Abiotic Stress Response in Trees

A major challenge for sustainable food, fuel, and fiber production is simultaneous genetic improvement of yield, biomass quality, and resilience to episodic environmental stress and climate change. For Populus and other forest trees, quality traits involve alterations in the secondary cell wall (SCW...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2021-03, Vol.12, p.639769, Article 639769
Hauptverfasser: Coleman, Heather D., Brunner, Amy M., Tsai, Chung-Jui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A major challenge for sustainable food, fuel, and fiber production is simultaneous genetic improvement of yield, biomass quality, and resilience to episodic environmental stress and climate change. For Populus and other forest trees, quality traits involve alterations in the secondary cell wall (SCW) of wood for traditional uses, as well as for a growing diversity of biofuels and bioproducts. Alterations in wood properties that are desirable for specific end uses can have negative effects on growth and stress tolerance. Understanding of the diverse roles of SCW genes is necessary for the genetic improvement of fast-growing, short-rotation trees that face perennial challenges in their growth and development. Here, we review recent progress into the synergies and antagonisms of SCW development and abiotic stress responses, particularly, the roles of transcription factors, SCW biogenesis genes, and paralog evolution.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2021.639769