Inverse Design and 3D Printing of a Metalens on an Optical Fiber Tip for Direct Laser Lithography

An inverse-designed metalens is proposed, designed, and fabricated on an optical fiber tip via a 3D direct laser-writing technique through two-photon polymerization. A computational inverse-design method based on an objective-first algorithm was used to design a thin circular grating-like structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-03, Vol.21 (6), p.2422-2428
Hauptverfasser: Hadibrata, Wisnu, Wei, Heming, Krishnaswamy, Sridhar, Aydin, Koray
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An inverse-designed metalens is proposed, designed, and fabricated on an optical fiber tip via a 3D direct laser-writing technique through two-photon polymerization. A computational inverse-design method based on an objective-first algorithm was used to design a thin circular grating-like structure to transform the parallel wavefront into a spherical wavefront at the near-infrared range. With a focal length about 8 μm at an operating wavelength of 980 nm and an optimized focal spot at the scale of 100 nm, our proposed metalens platform is suitable for two-photon direct laser lithography. We demonstrate the use of the fabricated metalens in a direct laser lithography system. The proposed platform, which combines the 3D printing technique and the computational inverse-design method, shows great promise for the fabrication and integration of multiscale and multiple photonic devices with complex functionalities.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.0c04463