A Contextual Hybrid Model for Vessel Movement Prediction

Predicting the movement of the vessels can significantly improve the management of safety. While the movement can be a function of geographic contexts, the current systems and methods rarely incorporate contextual information into the analysis. This paper initially proposes a novel context-aware tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.45600-45613
Hauptverfasser: Mehri, Saeed, Alesheikh, Ali Asghar, Basiri, Anahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predicting the movement of the vessels can significantly improve the management of safety. While the movement can be a function of geographic contexts, the current systems and methods rarely incorporate contextual information into the analysis. This paper initially proposes a novel context-aware trajectories' simplification method to embed the effects of geographic context which guarantees the logical consistency of the compressed trajectories, and further suggests a hybrid method that is built upon a curvilinear model and deep neural networks. The proposed method employs contextual information to check the logical consistency of the curvilinear method and then, constructs a Context-aware Long Short-Term Memory (CLSTM) network that can take into account contextual variables, such as the vessel types. The proposed method can enhance the prediction accuracy while maintaining the logical consistency, through a recursive feedback loop. The implementations of the proposed approach on the Automatic Identification System (AIS) dataset, from the eastern coast of the United States of America which was collected, from November to December 2017, demonstrates the effectiveness and better compression, i.e. 80% compression ratio while maintaining the logical consistency. The estimated compressed trajectories are 23% more similar to their original trajectories compared to currently used simplification methods. Furthermore, the overall accuracy of the implemented hybrid method is 15.68% higher than the ordinary Long Short-Term Memory (LSTM) network which is currently used by various maritime systems and applications, including collision avoidance, vessel route planning, and anomaly detection systems.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3066463