A derivative‐free scaling memoryless Broyden–Fletcher–Goldfarb–Shanno method for solving a system of monotone nonlinear equations

This paper presents the two‐parameter scaling memoryless Broyden–Fletcher–Goldfarb–Shanno (BFGS) method for solving a system of monotone nonlinear equations. The optimal values of the scaling parameters are obtained by minimizing the measure function involving all the eigenvalues of the memoryless B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2021-10, Vol.28 (5), p.n/a, Article 2374
Hauptverfasser: Ullah, Najib, Sabi'u, Jamilu, Shah, Abdullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the two‐parameter scaling memoryless Broyden–Fletcher–Goldfarb–Shanno (BFGS) method for solving a system of monotone nonlinear equations. The optimal values of the scaling parameters are obtained by minimizing the measure function involving all the eigenvalues of the memoryless BFGS matrix. The optimal values can be used in the analysis of the quasi‐Newton method for ill‐conditioned matrices. This algorithm can also be described as a combination of the projection technique and memoryless BGFS method. Global convergence of the method is provided. For validation and efficiency of the scheme, some test problems are computed and compared with existing results.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.2374