Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor

Energy conservation and battery life extension are key challenges for the next-generation hybrid electric vehicles. In particular, the temperature and electric currents in a storage battery need to be monitored simultaneously with ∼1 kHz signal bandwidth for optimum battery usage. Here we introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-01, Vol.118 (3), Article 034001
Hauptverfasser: Hatano, Yuji, Shin, Jaewon, Nishitani, Daisuke, Iwatsuka, Haruki, Masuyama, Yuta, Sugiyama, Hiroki, Ishii, Makoto, Onoda, Shinobu, Ohshima, Takeshi, Arai, Keigo, Iwasaki, Takayuki, Hatano, Mutsuko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics letters
container_volume 118
creator Hatano, Yuji
Shin, Jaewon
Nishitani, Daisuke
Iwatsuka, Haruki
Masuyama, Yuta
Sugiyama, Hiroki
Ishii, Makoto
Onoda, Shinobu
Ohshima, Takeshi
Arai, Keigo
Iwasaki, Takayuki
Hatano, Mutsuko
description Energy conservation and battery life extension are key challenges for the next-generation hybrid electric vehicles. In particular, the temperature and electric currents in a storage battery need to be monitored simultaneously with ∼1 kHz signal bandwidth for optimum battery usage. Here we introduce a centimeter-scale portable quantum sensor head, consisting of a diamond substrate hosting an ensemble of nitrogen-vacancy (NV) color centers with a density of ∼3 × 1017 cm−3. One diamond surface is attached to a multi-mode fiber for simultaneous optical excitation and readout of the NV centers, while the other diamond surface is attached to a coplanar microwave guide for NV spin ground-state mixing. Signal bandwidth of 1 kHz was realized through time-domain multiplexing of the two-tone microwave frequency modulation at 20 kHz. Two microwave frequencies were locked to the two resonance points that were determined from the optically detected magnetic resonance spectrum. From the mean and the difference of the deviation from the two locked frequencies, the temperature and magnetic field were obtained simultaneously and independently, with sensitivities of 3.5 nT/Hz1/2 and 1.3 mK/Hz1/2, respectively. We also showed that our sensor reached a minimum detectable magnetic field of 5 pT by accumulating signals for over 10 000 s.
doi_str_mv 10.1063/5.0031502
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000630395500001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479900392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-dca2f77f7447031198e781efd86f970b5efc50e535500e8083bf9028fb86bfe03</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOI4u_AcFVyrVm2bSpEsZfIHgwse2pO3NWJkmYx6K_95Ih3EhiKtwD9-5OfcQckjhjELJzvkZAKMcii0yoSBEziiV22QCSc7LitNdsuf9axp5wdiEPD_0Q1wGZdBGn4UXdIMdMLjPTJkuG9TCYFgL0fdmkalM9w26vLVxtcQue4vKhDhkXa8Gmywejbdun-xotfR4sH6n5Onq8nF-k9_dX9_OL-7ydsZEyLtWFVoILWYzkWLTSqKQFHUnS10JaDjqlgNyxjkASpCs0RUUUjeybDQCm5Kjce_K2beIPtSvNjqTvqyLmaiqdHVVJOp4pFpnvXeo65XrB-U-awr1d201r9e1JfZ0ZD-wsdq3PZoWN3zqrWRp53ceAJpo-X963gcVemvmNpqQrCejNblGfeN7t-4nUb3q9F_w7xO-AI5lnI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479900392</pqid></control><display><type>article</type><title>Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Hatano, Yuji ; Shin, Jaewon ; Nishitani, Daisuke ; Iwatsuka, Haruki ; Masuyama, Yuta ; Sugiyama, Hiroki ; Ishii, Makoto ; Onoda, Shinobu ; Ohshima, Takeshi ; Arai, Keigo ; Iwasaki, Takayuki ; Hatano, Mutsuko</creator><creatorcontrib>Hatano, Yuji ; Shin, Jaewon ; Nishitani, Daisuke ; Iwatsuka, Haruki ; Masuyama, Yuta ; Sugiyama, Hiroki ; Ishii, Makoto ; Onoda, Shinobu ; Ohshima, Takeshi ; Arai, Keigo ; Iwasaki, Takayuki ; Hatano, Mutsuko</creatorcontrib><description>Energy conservation and battery life extension are key challenges for the next-generation hybrid electric vehicles. In particular, the temperature and electric currents in a storage battery need to be monitored simultaneously with ∼1 kHz signal bandwidth for optimum battery usage. Here we introduce a centimeter-scale portable quantum sensor head, consisting of a diamond substrate hosting an ensemble of nitrogen-vacancy (NV) color centers with a density of ∼3 × 1017 cm−3. One diamond surface is attached to a multi-mode fiber for simultaneous optical excitation and readout of the NV centers, while the other diamond surface is attached to a coplanar microwave guide for NV spin ground-state mixing. Signal bandwidth of 1 kHz was realized through time-domain multiplexing of the two-tone microwave frequency modulation at 20 kHz. Two microwave frequencies were locked to the two resonance points that were determined from the optically detected magnetic resonance spectrum. From the mean and the difference of the deviation from the two locked frequencies, the temperature and magnetic field were obtained simultaneously and independently, with sensitivities of 3.5 nT/Hz1/2 and 1.3 mK/Hz1/2, respectively. We also showed that our sensor reached a minimum detectable magnetic field of 5 pT by accumulating signals for over 10 000 s.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0031502</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Applied physics ; Batteries ; Color centers ; Diamonds ; Electric vehicles ; Frequency modulation ; Hybrid electric vehicles ; Life extension ; Magnetic fields ; Magnetic measurement ; Magnetic resonance ; Microwave frequencies ; Multiplexing ; Physical Sciences ; Physics ; Physics, Applied ; Quantum sensors ; Science &amp; Technology ; Sensors ; Substrates ; Thermometry</subject><ispartof>Applied physics letters, 2021-01, Vol.118 (3), Article 034001</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000630395500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c437t-dca2f77f7447031198e781efd86f970b5efc50e535500e8083bf9028fb86bfe03</citedby><cites>FETCH-LOGICAL-c437t-dca2f77f7447031198e781efd86f970b5efc50e535500e8083bf9028fb86bfe03</cites><orcidid>0000-0002-0114-5346 ; 0000-0002-0056-8531 ; 0000-0003-1425-0708 ; 0000-0002-7850-3164 ; 0000-0002-7676-5726 ; 0000-0001-6149-5447 ; 0000-0002-7772-6999 ; 0000-0001-6319-7718 ; 0000-0002-1733-095X ; 0000-0002-9768-2778 ; 0000-0001-9439-4474 ; 0000-0001-7722-5927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0031502$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,39263,76389</link.rule.ids></links><search><creatorcontrib>Hatano, Yuji</creatorcontrib><creatorcontrib>Shin, Jaewon</creatorcontrib><creatorcontrib>Nishitani, Daisuke</creatorcontrib><creatorcontrib>Iwatsuka, Haruki</creatorcontrib><creatorcontrib>Masuyama, Yuta</creatorcontrib><creatorcontrib>Sugiyama, Hiroki</creatorcontrib><creatorcontrib>Ishii, Makoto</creatorcontrib><creatorcontrib>Onoda, Shinobu</creatorcontrib><creatorcontrib>Ohshima, Takeshi</creatorcontrib><creatorcontrib>Arai, Keigo</creatorcontrib><creatorcontrib>Iwasaki, Takayuki</creatorcontrib><creatorcontrib>Hatano, Mutsuko</creatorcontrib><title>Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor</title><title>Applied physics letters</title><addtitle>APPL PHYS LETT</addtitle><description>Energy conservation and battery life extension are key challenges for the next-generation hybrid electric vehicles. In particular, the temperature and electric currents in a storage battery need to be monitored simultaneously with ∼1 kHz signal bandwidth for optimum battery usage. Here we introduce a centimeter-scale portable quantum sensor head, consisting of a diamond substrate hosting an ensemble of nitrogen-vacancy (NV) color centers with a density of ∼3 × 1017 cm−3. One diamond surface is attached to a multi-mode fiber for simultaneous optical excitation and readout of the NV centers, while the other diamond surface is attached to a coplanar microwave guide for NV spin ground-state mixing. Signal bandwidth of 1 kHz was realized through time-domain multiplexing of the two-tone microwave frequency modulation at 20 kHz. Two microwave frequencies were locked to the two resonance points that were determined from the optically detected magnetic resonance spectrum. From the mean and the difference of the deviation from the two locked frequencies, the temperature and magnetic field were obtained simultaneously and independently, with sensitivities of 3.5 nT/Hz1/2 and 1.3 mK/Hz1/2, respectively. We also showed that our sensor reached a minimum detectable magnetic field of 5 pT by accumulating signals for over 10 000 s.</description><subject>Applied physics</subject><subject>Batteries</subject><subject>Color centers</subject><subject>Diamonds</subject><subject>Electric vehicles</subject><subject>Frequency modulation</subject><subject>Hybrid electric vehicles</subject><subject>Life extension</subject><subject>Magnetic fields</subject><subject>Magnetic measurement</subject><subject>Magnetic resonance</subject><subject>Microwave frequencies</subject><subject>Multiplexing</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Quantum sensors</subject><subject>Science &amp; Technology</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Thermometry</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEtLxDAUhYMoOI4u_AcFVyrVm2bSpEsZfIHgwse2pO3NWJkmYx6K_95Ih3EhiKtwD9-5OfcQckjhjELJzvkZAKMcii0yoSBEziiV22QCSc7LitNdsuf9axp5wdiEPD_0Q1wGZdBGn4UXdIMdMLjPTJkuG9TCYFgL0fdmkalM9w26vLVxtcQue4vKhDhkXa8Gmywejbdun-xotfR4sH6n5Onq8nF-k9_dX9_OL-7ydsZEyLtWFVoILWYzkWLTSqKQFHUnS10JaDjqlgNyxjkASpCs0RUUUjeybDQCm5Kjce_K2beIPtSvNjqTvqyLmaiqdHVVJOp4pFpnvXeo65XrB-U-awr1d201r9e1JfZ0ZD-wsdq3PZoWN3zqrWRp53ceAJpo-X963gcVemvmNpqQrCejNblGfeN7t-4nUb3q9F_w7xO-AI5lnI8</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Hatano, Yuji</creator><creator>Shin, Jaewon</creator><creator>Nishitani, Daisuke</creator><creator>Iwatsuka, Haruki</creator><creator>Masuyama, Yuta</creator><creator>Sugiyama, Hiroki</creator><creator>Ishii, Makoto</creator><creator>Onoda, Shinobu</creator><creator>Ohshima, Takeshi</creator><creator>Arai, Keigo</creator><creator>Iwasaki, Takayuki</creator><creator>Hatano, Mutsuko</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0114-5346</orcidid><orcidid>https://orcid.org/0000-0002-0056-8531</orcidid><orcidid>https://orcid.org/0000-0003-1425-0708</orcidid><orcidid>https://orcid.org/0000-0002-7850-3164</orcidid><orcidid>https://orcid.org/0000-0002-7676-5726</orcidid><orcidid>https://orcid.org/0000-0001-6149-5447</orcidid><orcidid>https://orcid.org/0000-0002-7772-6999</orcidid><orcidid>https://orcid.org/0000-0001-6319-7718</orcidid><orcidid>https://orcid.org/0000-0002-1733-095X</orcidid><orcidid>https://orcid.org/0000-0002-9768-2778</orcidid><orcidid>https://orcid.org/0000-0001-9439-4474</orcidid><orcidid>https://orcid.org/0000-0001-7722-5927</orcidid></search><sort><creationdate>20210118</creationdate><title>Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor</title><author>Hatano, Yuji ; Shin, Jaewon ; Nishitani, Daisuke ; Iwatsuka, Haruki ; Masuyama, Yuta ; Sugiyama, Hiroki ; Ishii, Makoto ; Onoda, Shinobu ; Ohshima, Takeshi ; Arai, Keigo ; Iwasaki, Takayuki ; Hatano, Mutsuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-dca2f77f7447031198e781efd86f970b5efc50e535500e8083bf9028fb86bfe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Batteries</topic><topic>Color centers</topic><topic>Diamonds</topic><topic>Electric vehicles</topic><topic>Frequency modulation</topic><topic>Hybrid electric vehicles</topic><topic>Life extension</topic><topic>Magnetic fields</topic><topic>Magnetic measurement</topic><topic>Magnetic resonance</topic><topic>Microwave frequencies</topic><topic>Multiplexing</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Quantum sensors</topic><topic>Science &amp; Technology</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Thermometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatano, Yuji</creatorcontrib><creatorcontrib>Shin, Jaewon</creatorcontrib><creatorcontrib>Nishitani, Daisuke</creatorcontrib><creatorcontrib>Iwatsuka, Haruki</creatorcontrib><creatorcontrib>Masuyama, Yuta</creatorcontrib><creatorcontrib>Sugiyama, Hiroki</creatorcontrib><creatorcontrib>Ishii, Makoto</creatorcontrib><creatorcontrib>Onoda, Shinobu</creatorcontrib><creatorcontrib>Ohshima, Takeshi</creatorcontrib><creatorcontrib>Arai, Keigo</creatorcontrib><creatorcontrib>Iwasaki, Takayuki</creatorcontrib><creatorcontrib>Hatano, Mutsuko</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatano, Yuji</au><au>Shin, Jaewon</au><au>Nishitani, Daisuke</au><au>Iwatsuka, Haruki</au><au>Masuyama, Yuta</au><au>Sugiyama, Hiroki</au><au>Ishii, Makoto</au><au>Onoda, Shinobu</au><au>Ohshima, Takeshi</au><au>Arai, Keigo</au><au>Iwasaki, Takayuki</au><au>Hatano, Mutsuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor</atitle><jtitle>Applied physics letters</jtitle><stitle>APPL PHYS LETT</stitle><date>2021-01-18</date><risdate>2021</risdate><volume>118</volume><issue>3</issue><artnum>034001</artnum><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Energy conservation and battery life extension are key challenges for the next-generation hybrid electric vehicles. In particular, the temperature and electric currents in a storage battery need to be monitored simultaneously with ∼1 kHz signal bandwidth for optimum battery usage. Here we introduce a centimeter-scale portable quantum sensor head, consisting of a diamond substrate hosting an ensemble of nitrogen-vacancy (NV) color centers with a density of ∼3 × 1017 cm−3. One diamond surface is attached to a multi-mode fiber for simultaneous optical excitation and readout of the NV centers, while the other diamond surface is attached to a coplanar microwave guide for NV spin ground-state mixing. Signal bandwidth of 1 kHz was realized through time-domain multiplexing of the two-tone microwave frequency modulation at 20 kHz. Two microwave frequencies were locked to the two resonance points that were determined from the optically detected magnetic resonance spectrum. From the mean and the difference of the deviation from the two locked frequencies, the temperature and magnetic field were obtained simultaneously and independently, with sensitivities of 3.5 nT/Hz1/2 and 1.3 mK/Hz1/2, respectively. We also showed that our sensor reached a minimum detectable magnetic field of 5 pT by accumulating signals for over 10 000 s.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><doi>10.1063/5.0031502</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0114-5346</orcidid><orcidid>https://orcid.org/0000-0002-0056-8531</orcidid><orcidid>https://orcid.org/0000-0003-1425-0708</orcidid><orcidid>https://orcid.org/0000-0002-7850-3164</orcidid><orcidid>https://orcid.org/0000-0002-7676-5726</orcidid><orcidid>https://orcid.org/0000-0001-6149-5447</orcidid><orcidid>https://orcid.org/0000-0002-7772-6999</orcidid><orcidid>https://orcid.org/0000-0001-6319-7718</orcidid><orcidid>https://orcid.org/0000-0002-1733-095X</orcidid><orcidid>https://orcid.org/0000-0002-9768-2778</orcidid><orcidid>https://orcid.org/0000-0001-9439-4474</orcidid><orcidid>https://orcid.org/0000-0001-7722-5927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-01, Vol.118 (3), Article 034001
issn 0003-6951
1077-3118
language eng
recordid cdi_webofscience_primary_000630395500001
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Applied physics
Batteries
Color centers
Diamonds
Electric vehicles
Frequency modulation
Hybrid electric vehicles
Life extension
Magnetic fields
Magnetic measurement
Magnetic resonance
Microwave frequencies
Multiplexing
Physical Sciences
Physics
Physics, Applied
Quantum sensors
Science & Technology
Sensors
Substrates
Thermometry
title Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20thermometry%20and%20magnetometry%20using%20a%20fiber-coupled%20quantum%20diamond%20sensor&rft.jtitle=Applied%20physics%20letters&rft.au=Hatano,%20Yuji&rft.date=2021-01-18&rft.volume=118&rft.issue=3&rft.artnum=034001&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0031502&rft_dat=%3Cproquest_webof%3E2479900392%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479900392&rft_id=info:pmid/&rfr_iscdi=true