Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor

Energy conservation and battery life extension are key challenges for the next-generation hybrid electric vehicles. In particular, the temperature and electric currents in a storage battery need to be monitored simultaneously with ∼1 kHz signal bandwidth for optimum battery usage. Here we introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-01, Vol.118 (3), Article 034001
Hauptverfasser: Hatano, Yuji, Shin, Jaewon, Nishitani, Daisuke, Iwatsuka, Haruki, Masuyama, Yuta, Sugiyama, Hiroki, Ishii, Makoto, Onoda, Shinobu, Ohshima, Takeshi, Arai, Keigo, Iwasaki, Takayuki, Hatano, Mutsuko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy conservation and battery life extension are key challenges for the next-generation hybrid electric vehicles. In particular, the temperature and electric currents in a storage battery need to be monitored simultaneously with ∼1 kHz signal bandwidth for optimum battery usage. Here we introduce a centimeter-scale portable quantum sensor head, consisting of a diamond substrate hosting an ensemble of nitrogen-vacancy (NV) color centers with a density of ∼3 × 1017 cm−3. One diamond surface is attached to a multi-mode fiber for simultaneous optical excitation and readout of the NV centers, while the other diamond surface is attached to a coplanar microwave guide for NV spin ground-state mixing. Signal bandwidth of 1 kHz was realized through time-domain multiplexing of the two-tone microwave frequency modulation at 20 kHz. Two microwave frequencies were locked to the two resonance points that were determined from the optically detected magnetic resonance spectrum. From the mean and the difference of the deviation from the two locked frequencies, the temperature and magnetic field were obtained simultaneously and independently, with sensitivities of 3.5 nT/Hz1/2 and 1.3 mK/Hz1/2, respectively. We also showed that our sensor reached a minimum detectable magnetic field of 5 pT by accumulating signals for over 10 000 s.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0031502