Bar Category of Modules and Homotopy Adjunction for Tensor Functors

Abstract Given a differentially graded (DG)-category ${{\mathcal{A}}}$, we introduce the bar category of modules ${\overline{\textbf{{Mod}}}-{\mathcal{A}}}$. It is a DG enhancement of the derived category $D({{\mathcal{A}}})$ of ${{\mathcal{A}}}$, which is isomorphic to the category of DG ${{\mathca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2021-01, Vol.2021 (2), p.1353-1462
Hauptverfasser: Anno, Rina, Logvinenko, Timothy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1462
container_issue 2
container_start_page 1353
container_title International mathematics research notices
container_volume 2021
creator Anno, Rina
Logvinenko, Timothy
description Abstract Given a differentially graded (DG)-category ${{\mathcal{A}}}$, we introduce the bar category of modules ${\overline{\textbf{{Mod}}}-{\mathcal{A}}}$. It is a DG enhancement of the derived category $D({{\mathcal{A}}})$ of ${{\mathcal{A}}}$, which is isomorphic to the category of DG ${{\mathcal{A}}}$-modules with ${A_{\infty }}$-morphisms between them. However, it is defined intrinsically in the language of DG categories and requires no complex machinery or sign conventions of ${A_{\infty }}$-categories. We define for these bar categories Tensor and Hom bifunctors, dualisation functors, and a convolution of twisted complexes. The intended application is to working with DG-bimodules as enhancements of exact functors between triangulated categories. As a demonstration, we develop a homotopy adjunction theory for tensor functors between derived categories of DG categories. It allows us to show in an enhanced setting that given a functor $F$ with left and right adjoints $L$ and $R$, the functorial complex $FR \xrightarrow{F{\operatorname{act}}{R}} FRFR \xrightarrow{FR{\operatorname{tr}} - {\operatorname{tr}}{FR}} FR \xrightarrow{{\operatorname{tr}}} {\operatorname{Id}}$ lifts to a canonical twisted complex whose convolution is the square of the spherical twist of $F$. We then write down four induced functorial Postnikov systems computing this convolution.
doi_str_mv 10.1093/imrn/rnaa066
format Article
fullrecord <record><control><sourceid>oup_webof</sourceid><recordid>TN_cdi_webofscience_primary_000629746800015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnaa066</oup_id><sourcerecordid>10.1093/imrn/rnaa066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-79a291cbb12390797a990309973c5837d7bb66a0aab364f20b01e7bd90cc068e3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKs7f0B2LnTsTdLmsaxDa4WKm7oekkxGprRJSWaQ_nsztLgUV_dw-c59HITuCTwTUGzS7qOfRK81cH6BRoRLUQCdisusQbBCKCqv0U1KWwAKRLIRKl90xKXu3FeIRxwa_B7qfucS1r7Gq7APXTgc8bze9t52bfC4CRFvnE-5LIdeiOkWXTV6l9zduY7R53KxKVfF-uP1rZyvC8sE6fJ2TRWxxhDKFAgltFLAQCnB7EwyUQtjONegtWF82lAwQJwwtQJrgUvHxujpNNfGkFJ0TXWI7V7HY0WgGgKohgCqcwAZlyf825nQJNs6b92vBQA4VWLKZVZkVradHv4rQ--7bH38vzXTDyc69Ie_T_oBN7B95g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bar Category of Modules and Homotopy Adjunction for Tensor Functors</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Anno, Rina ; Logvinenko, Timothy</creator><creatorcontrib>Anno, Rina ; Logvinenko, Timothy</creatorcontrib><description>Abstract Given a differentially graded (DG)-category ${{\mathcal{A}}}$, we introduce the bar category of modules ${\overline{\textbf{{Mod}}}-{\mathcal{A}}}$. It is a DG enhancement of the derived category $D({{\mathcal{A}}})$ of ${{\mathcal{A}}}$, which is isomorphic to the category of DG ${{\mathcal{A}}}$-modules with ${A_{\infty }}$-morphisms between them. However, it is defined intrinsically in the language of DG categories and requires no complex machinery or sign conventions of ${A_{\infty }}$-categories. We define for these bar categories Tensor and Hom bifunctors, dualisation functors, and a convolution of twisted complexes. The intended application is to working with DG-bimodules as enhancements of exact functors between triangulated categories. As a demonstration, we develop a homotopy adjunction theory for tensor functors between derived categories of DG categories. It allows us to show in an enhanced setting that given a functor $F$ with left and right adjoints $L$ and $R$, the functorial complex $FR \xrightarrow{F{\operatorname{act}}{R}} FRFR \xrightarrow{FR{\operatorname{tr}} - {\operatorname{tr}}{FR}} FR \xrightarrow{{\operatorname{tr}}} {\operatorname{Id}}$ lifts to a canonical twisted complex whose convolution is the square of the spherical twist of $F$. We then write down four induced functorial Postnikov systems computing this convolution.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnaa066</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Mathematics ; Physical Sciences ; Science &amp; Technology</subject><ispartof>International mathematics research notices, 2021-01, Vol.2021 (2), p.1353-1462</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000629746800015</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c371t-79a291cbb12390797a990309973c5837d7bb66a0aab364f20b01e7bd90cc068e3</citedby><cites>FETCH-LOGICAL-c371t-79a291cbb12390797a990309973c5837d7bb66a0aab364f20b01e7bd90cc068e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1585,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Anno, Rina</creatorcontrib><creatorcontrib>Logvinenko, Timothy</creatorcontrib><title>Bar Category of Modules and Homotopy Adjunction for Tensor Functors</title><title>International mathematics research notices</title><addtitle>INT MATH RES NOTICES</addtitle><description>Abstract Given a differentially graded (DG)-category ${{\mathcal{A}}}$, we introduce the bar category of modules ${\overline{\textbf{{Mod}}}-{\mathcal{A}}}$. It is a DG enhancement of the derived category $D({{\mathcal{A}}})$ of ${{\mathcal{A}}}$, which is isomorphic to the category of DG ${{\mathcal{A}}}$-modules with ${A_{\infty }}$-morphisms between them. However, it is defined intrinsically in the language of DG categories and requires no complex machinery or sign conventions of ${A_{\infty }}$-categories. We define for these bar categories Tensor and Hom bifunctors, dualisation functors, and a convolution of twisted complexes. The intended application is to working with DG-bimodules as enhancements of exact functors between triangulated categories. As a demonstration, we develop a homotopy adjunction theory for tensor functors between derived categories of DG categories. It allows us to show in an enhanced setting that given a functor $F$ with left and right adjoints $L$ and $R$, the functorial complex $FR \xrightarrow{F{\operatorname{act}}{R}} FRFR \xrightarrow{FR{\operatorname{tr}} - {\operatorname{tr}}{FR}} FR \xrightarrow{{\operatorname{tr}}} {\operatorname{Id}}$ lifts to a canonical twisted complex whose convolution is the square of the spherical twist of $F$. We then write down four induced functorial Postnikov systems computing this convolution.</description><subject>Mathematics</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEtLAzEUhYMoWKs7f0B2LnTsTdLmsaxDa4WKm7oekkxGprRJSWaQ_nsztLgUV_dw-c59HITuCTwTUGzS7qOfRK81cH6BRoRLUQCdisusQbBCKCqv0U1KWwAKRLIRKl90xKXu3FeIRxwa_B7qfucS1r7Gq7APXTgc8bze9t52bfC4CRFvnE-5LIdeiOkWXTV6l9zduY7R53KxKVfF-uP1rZyvC8sE6fJ2TRWxxhDKFAgltFLAQCnB7EwyUQtjONegtWF82lAwQJwwtQJrgUvHxujpNNfGkFJ0TXWI7V7HY0WgGgKohgCqcwAZlyf825nQJNs6b92vBQA4VWLKZVZkVradHv4rQ--7bH38vzXTDyc69Ie_T_oBN7B95g</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Anno, Rina</creator><creator>Logvinenko, Timothy</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Bar Category of Modules and Homotopy Adjunction for Tensor Functors</title><author>Anno, Rina ; Logvinenko, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-79a291cbb12390797a990309973c5837d7bb66a0aab364f20b01e7bd90cc068e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anno, Rina</creatorcontrib><creatorcontrib>Logvinenko, Timothy</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anno, Rina</au><au>Logvinenko, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bar Category of Modules and Homotopy Adjunction for Tensor Functors</atitle><jtitle>International mathematics research notices</jtitle><stitle>INT MATH RES NOTICES</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>2021</volume><issue>2</issue><spage>1353</spage><epage>1462</epage><pages>1353-1462</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract Given a differentially graded (DG)-category ${{\mathcal{A}}}$, we introduce the bar category of modules ${\overline{\textbf{{Mod}}}-{\mathcal{A}}}$. It is a DG enhancement of the derived category $D({{\mathcal{A}}})$ of ${{\mathcal{A}}}$, which is isomorphic to the category of DG ${{\mathcal{A}}}$-modules with ${A_{\infty }}$-morphisms between them. However, it is defined intrinsically in the language of DG categories and requires no complex machinery or sign conventions of ${A_{\infty }}$-categories. We define for these bar categories Tensor and Hom bifunctors, dualisation functors, and a convolution of twisted complexes. The intended application is to working with DG-bimodules as enhancements of exact functors between triangulated categories. As a demonstration, we develop a homotopy adjunction theory for tensor functors between derived categories of DG categories. It allows us to show in an enhanced setting that given a functor $F$ with left and right adjoints $L$ and $R$, the functorial complex $FR \xrightarrow{F{\operatorname{act}}{R}} FRFR \xrightarrow{FR{\operatorname{tr}} - {\operatorname{tr}}{FR}} FR \xrightarrow{{\operatorname{tr}}} {\operatorname{Id}}$ lifts to a canonical twisted complex whose convolution is the square of the spherical twist of $F$. We then write down four induced functorial Postnikov systems computing this convolution.</abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><doi>10.1093/imrn/rnaa066</doi><tpages>110</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2021-01, Vol.2021 (2), p.1353-1462
issn 1073-7928
1687-0247
language eng
recordid cdi_webofscience_primary_000629746800015
source Oxford University Press Journals All Titles (1996-Current); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Mathematics
Physical Sciences
Science & Technology
title Bar Category of Modules and Homotopy Adjunction for Tensor Functors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bar%20Category%20of%20Modules%20and%20Homotopy%20Adjunction%20for%20Tensor%20Functors&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Anno,%20Rina&rft.date=2021-01-01&rft.volume=2021&rft.issue=2&rft.spage=1353&rft.epage=1462&rft.pages=1353-1462&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnaa066&rft_dat=%3Coup_webof%3E10.1093/imrn/rnaa066%3C/oup_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnaa066&rfr_iscdi=true