Bar Category of Modules and Homotopy Adjunction for Tensor Functors

Abstract Given a differentially graded (DG)-category ${{\mathcal{A}}}$, we introduce the bar category of modules ${\overline{\textbf{{Mod}}}-{\mathcal{A}}}$. It is a DG enhancement of the derived category $D({{\mathcal{A}}})$ of ${{\mathcal{A}}}$, which is isomorphic to the category of DG ${{\mathca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2021-01, Vol.2021 (2), p.1353-1462
Hauptverfasser: Anno, Rina, Logvinenko, Timothy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Given a differentially graded (DG)-category ${{\mathcal{A}}}$, we introduce the bar category of modules ${\overline{\textbf{{Mod}}}-{\mathcal{A}}}$. It is a DG enhancement of the derived category $D({{\mathcal{A}}})$ of ${{\mathcal{A}}}$, which is isomorphic to the category of DG ${{\mathcal{A}}}$-modules with ${A_{\infty }}$-morphisms between them. However, it is defined intrinsically in the language of DG categories and requires no complex machinery or sign conventions of ${A_{\infty }}$-categories. We define for these bar categories Tensor and Hom bifunctors, dualisation functors, and a convolution of twisted complexes. The intended application is to working with DG-bimodules as enhancements of exact functors between triangulated categories. As a demonstration, we develop a homotopy adjunction theory for tensor functors between derived categories of DG categories. It allows us to show in an enhanced setting that given a functor $F$ with left and right adjoints $L$ and $R$, the functorial complex $FR \xrightarrow{F{\operatorname{act}}{R}} FRFR \xrightarrow{FR{\operatorname{tr}} - {\operatorname{tr}}{FR}} FR \xrightarrow{{\operatorname{tr}}} {\operatorname{Id}}$ lifts to a canonical twisted complex whose convolution is the square of the spherical twist of $F$. We then write down four induced functorial Postnikov systems computing this convolution.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnaa066