Semi-device-independent randomness certification using Mermin’s proof of Kochen–Specker contextuality
Randomness is a potential resource for cryptography, simulations and algorithms. Non-local correlations violating Bell’s inequality certify the generation of bit strings whose randomness is guaranteed in a device-independent manner. We provide interesting semi-device-independent randomness certifica...
Gespeichert in:
Veröffentlicht in: | The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2021-03, Vol.75 (3), Article 98 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Randomness is a potential resource for cryptography, simulations and algorithms. Non-local correlations violating Bell’s inequality certify the generation of bit strings whose randomness is guaranteed in a device-independent manner. We provide interesting semi-device-independent randomness certification protocols by Kochen–Specker (KS) contextuality. For this, we first cast the Mermin’s magic-square proof of KS contextuality for two-qubit system as a semi-device-independent communication game in prepare-measure scenario. This provides a semi-device-independent certification of two-bit of randomness. Further, by using Mermin’s magic-star proof of KS theorem involving three-qubit system, we certify three bit of randomness. We conjecture that our proposals can be extended to certify any arbitrary bit of randomness through a suitable KS proof of contextuality valid for higher-dimensional system.
Graphic Abstract |
---|---|
ISSN: | 1434-6060 1434-6079 |
DOI: | 10.1140/epjd/s10053-021-00105-8 |