Variation of a Theme of Landau-Shanks in Positive Characteristic

Let A := F q [t] be a polynomial ring over a finite field F q of odd characteristic and let D ∈ A be a square-free polynomial. Denote by N D (n, q) the number of polynomials f in A of degree n which may be represented in the form u·f = A2–DB2 for some A, B ∈ A and u ∈ F q × , and by BD(n, q) the num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taiwanese journal of mathematics 2021-02, Vol.25 (1), p.23-43
Hauptverfasser: Chuang, Chih-Yun, Kuan, Yen-Liang, Yao, Wei-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A := F q [t] be a polynomial ring over a finite field F q of odd characteristic and let D ∈ A be a square-free polynomial. Denote by N D (n, q) the number of polynomials f in A of degree n which may be represented in the form u·f = A2–DB2 for some A, B ∈ A and u ∈ F q × , and by BD(n, q) the number of polynomials in A of degree n which can be represented by a primitive quadratic form of a given discriminant D ∈ A, not necessary square-free. If the class number of the maximal order of F q (t, √D) is one, then we give very precise asymptotic formulas for N D (n, q). Moreover, we also give very precise asymptotic formulas for BD(n, q).
ISSN:1027-5487
2224-6851
DOI:10.11650/tjm/200602