Mod-two cohomology rings of alternating groups

We calculate the direct sum of the mod-two cohomology of all alternating groups, with both cup and transfer product structures, which in particular determines the additive structure and ring structure of the cohomology of individual groups. We show that there are no nilpotent elements in the cohomol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2021-03, Vol.2021 (772), p.1-51
Hauptverfasser: Giusti, Chad, Sinha, Dev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We calculate the direct sum of the mod-two cohomology of all alternating groups, with both cup and transfer product structures, which in particular determines the additive structure and ring structure of the cohomology of individual groups. We show that there are no nilpotent elements in the cohomology rings of individual alternating groups. We calculate the action of the Steenrod algebra and discuss individual component rings. A range of techniques are developed, including an almost Hopf ring structure associated to the embeddings of products of alternating groups and Fox–Neuwirth resolutions, which are new techniques. We also extend understanding of the Gysin sequence relating the cohomology of alternating groups to that of symmetric groups and calculation of restriction to elementary abelian subgroups.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2020-0016