Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models
Tissue engineered organoids are simple biomodels that can emulate the structural and functional complexity of specific organs. Here, we review developments in three-dimensional (3D) artificial cell constructs to model gastrointestinal dynamics towards cancer diagnosis. We describe bottom-up approach...
Gespeichert in:
Veröffentlicht in: | Cancer letters 2021-04, Vol.504, p.116-124 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | |
container_start_page | 116 |
container_title | Cancer letters |
container_volume | 504 |
creator | Soto, Fernando Guimarães, Carlos F. Reis, Rui L. Franco, Walfre Rizvi, Imran Demirci, Utkan |
description | Tissue engineered organoids are simple biomodels that can emulate the structural and functional complexity of specific organs. Here, we review developments in three-dimensional (3D) artificial cell constructs to model gastrointestinal dynamics towards cancer diagnosis. We describe bottom-up approaches to fabricate close-packed cell aggregates, from the use of biochemical and physical cues to guide the self-assembly of organoids, to the use of engineering approaches, including 3D printing/additive manufacturing and external field-driven protocols. Finally, we outline the main challenges and possible risks regarding the potential translation of gastrointestinal organoids from laboratory settings to patient-specific models in clinical applications.
•Organoids can be constructed using adult differentiated cells or stem cells to model healthy and cancer tissues.•Physical and biochemical cues can induce the self-assembly and differentiation of organoids.•Active fabrication, including 3d printing and external field driven assembly offer design flexibility and large throughput.•Advances in Gastrointestinal organoid fabrication will accelerate clinical translation of personalized medicine. |
doi_str_mv | 10.1016/j.canlet.2021.01.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000625376500011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383521000471</els_id><sourcerecordid>2495383223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-1aa95f03bd0936757d88d6c679e5f02458afacdfa4d843408f2240bb4389356f3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rj6D0QavCxIj_nspC-CDLsqLHjRc0jnYzZDd6dNMi7-e2u2xz14EKGgQnje4q16EXpN8JZg0r0_bK2ZR1-3FFOyxVCUPUEboiRtZa_wU7TBDPOWKSYu0ItSDhhjwaV4ji4YE1L2Um3Q3fXk8z7O-2aIKZghR2tqTHNjliUnY-98aULKzd6UmlOcqy81zmZsUt6bOUVXmpruTYa-gNDPtSmLtzFE24A_63MzJefH8hI9C2Ys_tW5X6LvN9ffdp_b26-fvuw-3raWd6S2xJheBMwGh3vWSSGdUq6znew9fFMulAnGumC4U5xxrAKlHA8DZ6pnogvsEl2tc8H-jyO41VMs1o-jmX06Fk256mknFCGAvv0LPaRjhuVOVC_gcJQyoPhK2ZxKyT7oJcfJ5F-aYH1KQh_0moQ-JaEx1IPszXn4cZi8exT9OT0AagXu_ZBCsXA76x8xyKqjgslOwIuQXawPsezSca4gfff_UqA_rDSk4H9Gn_VZ4WL2tmqX4r9X-Q1_h72W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495383223</pqid></control><display><type>article</type><title>Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Soto, Fernando ; Guimarães, Carlos F. ; Reis, Rui L. ; Franco, Walfre ; Rizvi, Imran ; Demirci, Utkan</creator><creatorcontrib>Soto, Fernando ; Guimarães, Carlos F. ; Reis, Rui L. ; Franco, Walfre ; Rizvi, Imran ; Demirci, Utkan</creatorcontrib><description>Tissue engineered organoids are simple biomodels that can emulate the structural and functional complexity of specific organs. Here, we review developments in three-dimensional (3D) artificial cell constructs to model gastrointestinal dynamics towards cancer diagnosis. We describe bottom-up approaches to fabricate close-packed cell aggregates, from the use of biochemical and physical cues to guide the self-assembly of organoids, to the use of engineering approaches, including 3D printing/additive manufacturing and external field-driven protocols. Finally, we outline the main challenges and possible risks regarding the potential translation of gastrointestinal organoids from laboratory settings to patient-specific models in clinical applications.
•Organoids can be constructed using adult differentiated cells or stem cells to model healthy and cancer tissues.•Physical and biochemical cues can induce the self-assembly and differentiation of organoids.•Active fabrication, including 3d printing and external field driven assembly offer design flexibility and large throughput.•Advances in Gastrointestinal organoid fabrication will accelerate clinical translation of personalized medicine.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2021.01.023</identifier><identifier>PMID: 33577978</identifier><language>eng</language><publisher>CLARE: Elsevier B.V</publisher><subject>Bioengineering ; Cancer ; Externally driven assembly ; Growth factors ; Life Sciences & Biomedicine ; Oncology ; Organ on a chip ; Organoids ; Personalized medicine ; Physiology ; Science & Technology ; Self-assembly ; Stem cells ; Structure-function relationships ; Tissue engineering</subject><ispartof>Cancer letters, 2021-04, Vol.504, p.116-124</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><rights>2021. Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000625376500011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c461t-1aa95f03bd0936757d88d6c679e5f02458afacdfa4d843408f2240bb4389356f3</citedby><cites>FETCH-LOGICAL-c461t-1aa95f03bd0936757d88d6c679e5f02458afacdfa4d843408f2240bb4389356f3</cites><orcidid>0000-0001-8494-9325 ; 0000-0002-4295-6129 ; 0000-0001-9673-4700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.canlet.2021.01.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33577978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soto, Fernando</creatorcontrib><creatorcontrib>Guimarães, Carlos F.</creatorcontrib><creatorcontrib>Reis, Rui L.</creatorcontrib><creatorcontrib>Franco, Walfre</creatorcontrib><creatorcontrib>Rizvi, Imran</creatorcontrib><creatorcontrib>Demirci, Utkan</creatorcontrib><title>Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models</title><title>Cancer letters</title><addtitle>CANCER LETT</addtitle><addtitle>Cancer Lett</addtitle><description>Tissue engineered organoids are simple biomodels that can emulate the structural and functional complexity of specific organs. Here, we review developments in three-dimensional (3D) artificial cell constructs to model gastrointestinal dynamics towards cancer diagnosis. We describe bottom-up approaches to fabricate close-packed cell aggregates, from the use of biochemical and physical cues to guide the self-assembly of organoids, to the use of engineering approaches, including 3D printing/additive manufacturing and external field-driven protocols. Finally, we outline the main challenges and possible risks regarding the potential translation of gastrointestinal organoids from laboratory settings to patient-specific models in clinical applications.
•Organoids can be constructed using adult differentiated cells or stem cells to model healthy and cancer tissues.•Physical and biochemical cues can induce the self-assembly and differentiation of organoids.•Active fabrication, including 3d printing and external field driven assembly offer design flexibility and large throughput.•Advances in Gastrointestinal organoid fabrication will accelerate clinical translation of personalized medicine.</description><subject>Bioengineering</subject><subject>Cancer</subject><subject>Externally driven assembly</subject><subject>Growth factors</subject><subject>Life Sciences & Biomedicine</subject><subject>Oncology</subject><subject>Organ on a chip</subject><subject>Organoids</subject><subject>Personalized medicine</subject><subject>Physiology</subject><subject>Science & Technology</subject><subject>Self-assembly</subject><subject>Stem cells</subject><subject>Structure-function relationships</subject><subject>Tissue engineering</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU2LFDEQhoMo7rj6D0QavCxIj_nspC-CDLsqLHjRc0jnYzZDd6dNMi7-e2u2xz14EKGgQnje4q16EXpN8JZg0r0_bK2ZR1-3FFOyxVCUPUEboiRtZa_wU7TBDPOWKSYu0ItSDhhjwaV4ji4YE1L2Um3Q3fXk8z7O-2aIKZghR2tqTHNjliUnY-98aULKzd6UmlOcqy81zmZsUt6bOUVXmpruTYa-gNDPtSmLtzFE24A_63MzJefH8hI9C2Ys_tW5X6LvN9ffdp_b26-fvuw-3raWd6S2xJheBMwGh3vWSSGdUq6znew9fFMulAnGumC4U5xxrAKlHA8DZ6pnogvsEl2tc8H-jyO41VMs1o-jmX06Fk256mknFCGAvv0LPaRjhuVOVC_gcJQyoPhK2ZxKyT7oJcfJ5F-aYH1KQh_0moQ-JaEx1IPszXn4cZi8exT9OT0AagXu_ZBCsXA76x8xyKqjgslOwIuQXawPsezSca4gfff_UqA_rDSk4H9Gn_VZ4WL2tmqX4r9X-Q1_h72W</recordid><startdate>20210428</startdate><enddate>20210428</enddate><creator>Soto, Fernando</creator><creator>Guimarães, Carlos F.</creator><creator>Reis, Rui L.</creator><creator>Franco, Walfre</creator><creator>Rizvi, Imran</creator><creator>Demirci, Utkan</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Limited</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8494-9325</orcidid><orcidid>https://orcid.org/0000-0002-4295-6129</orcidid><orcidid>https://orcid.org/0000-0001-9673-4700</orcidid></search><sort><creationdate>20210428</creationdate><title>Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models</title><author>Soto, Fernando ; Guimarães, Carlos F. ; Reis, Rui L. ; Franco, Walfre ; Rizvi, Imran ; Demirci, Utkan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-1aa95f03bd0936757d88d6c679e5f02458afacdfa4d843408f2240bb4389356f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioengineering</topic><topic>Cancer</topic><topic>Externally driven assembly</topic><topic>Growth factors</topic><topic>Life Sciences & Biomedicine</topic><topic>Oncology</topic><topic>Organ on a chip</topic><topic>Organoids</topic><topic>Personalized medicine</topic><topic>Physiology</topic><topic>Science & Technology</topic><topic>Self-assembly</topic><topic>Stem cells</topic><topic>Structure-function relationships</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soto, Fernando</creatorcontrib><creatorcontrib>Guimarães, Carlos F.</creatorcontrib><creatorcontrib>Reis, Rui L.</creatorcontrib><creatorcontrib>Franco, Walfre</creatorcontrib><creatorcontrib>Rizvi, Imran</creatorcontrib><creatorcontrib>Demirci, Utkan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soto, Fernando</au><au>Guimarães, Carlos F.</au><au>Reis, Rui L.</au><au>Franco, Walfre</au><au>Rizvi, Imran</au><au>Demirci, Utkan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models</atitle><jtitle>Cancer letters</jtitle><stitle>CANCER LETT</stitle><addtitle>Cancer Lett</addtitle><date>2021-04-28</date><risdate>2021</risdate><volume>504</volume><spage>116</spage><epage>124</epage><pages>116-124</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>Tissue engineered organoids are simple biomodels that can emulate the structural and functional complexity of specific organs. Here, we review developments in three-dimensional (3D) artificial cell constructs to model gastrointestinal dynamics towards cancer diagnosis. We describe bottom-up approaches to fabricate close-packed cell aggregates, from the use of biochemical and physical cues to guide the self-assembly of organoids, to the use of engineering approaches, including 3D printing/additive manufacturing and external field-driven protocols. Finally, we outline the main challenges and possible risks regarding the potential translation of gastrointestinal organoids from laboratory settings to patient-specific models in clinical applications.
•Organoids can be constructed using adult differentiated cells or stem cells to model healthy and cancer tissues.•Physical and biochemical cues can induce the self-assembly and differentiation of organoids.•Active fabrication, including 3d printing and external field driven assembly offer design flexibility and large throughput.•Advances in Gastrointestinal organoid fabrication will accelerate clinical translation of personalized medicine.</abstract><cop>CLARE</cop><pub>Elsevier B.V</pub><pmid>33577978</pmid><doi>10.1016/j.canlet.2021.01.023</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8494-9325</orcidid><orcidid>https://orcid.org/0000-0002-4295-6129</orcidid><orcidid>https://orcid.org/0000-0001-9673-4700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3835 |
ispartof | Cancer letters, 2021-04, Vol.504, p.116-124 |
issn | 0304-3835 1872-7980 |
language | eng |
recordid | cdi_webofscience_primary_000625376500011 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Bioengineering Cancer Externally driven assembly Growth factors Life Sciences & Biomedicine Oncology Organ on a chip Organoids Personalized medicine Physiology Science & Technology Self-assembly Stem cells Structure-function relationships Tissue engineering |
title | Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20biofabrication%20approaches%20for%20gastrointestinal%20organoids%20towards%20patient%20specific%20cancer%20models&rft.jtitle=Cancer%20letters&rft.au=Soto,%20Fernando&rft.date=2021-04-28&rft.volume=504&rft.spage=116&rft.epage=124&rft.pages=116-124&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2021.01.023&rft_dat=%3Cproquest_webof%3E2495383223%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495383223&rft_id=info:pmid/33577978&rft_els_id=S0304383521000471&rfr_iscdi=true |