Combining automotive radar and LiDAR for surface detection in adverse conditions
Automotive radar and light detection and ranging (LiDAR) sensors have complementary strengths and weaknesses for 3D surface mapping. We present a method using Markov chain Monte Carlo sampling to recover surface returns from full‐wave longitudinal signals that takes advantage of the high spatial res...
Gespeichert in:
Veröffentlicht in: | IET Radar, Sonar & Navigation Sonar & Navigation, 2021-04, Vol.15 (4), p.359-369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Automotive radar and light detection and ranging (LiDAR) sensors have complementary strengths and weaknesses for 3D surface mapping. We present a method using Markov chain Monte Carlo sampling to recover surface returns from full‐wave longitudinal signals that takes advantage of the high spatial resolution of the LiDAR in range, azimuth and elevation together with the ability of the radar to penetrate obscuring media. The approach is demonstrated using both simulated and real data from an automotive system. |
---|---|
ISSN: | 1751-8784 1751-8792 |
DOI: | 10.1049/rsn2.12042 |