Duality results and regularization schemes for Prandtl-Reuss perfect plasticity

We consider the time-discretized problem of the quasi-static evolution problem in perfect plasticity posed in a non-reflexive Banach space. Based on a novel equivalent reformulation in a reflexive Banach space, the primal problem is characterized as a Fenchel dual problem of the classical incrementa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2021, Vol.27, p.S1, Article 1
Hauptverfasser: Hintermueller, M., Roesel, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the time-discretized problem of the quasi-static evolution problem in perfect plasticity posed in a non-reflexive Banach space. Based on a novel equivalent reformulation in a reflexive Banach space, the primal problem is characterized as a Fenchel dual problem of the classical incremental stress problem. This allows to obtain necessary and sufficient optimality conditions for the time-discrete problems of perfect plasticity. Furthermore, the consistency of a primal-dual stabilization scheme is proven. As a consequence, not only stresses, but also displacements and strains are shown to converge to a solution of the original problem in a suitable topology. The corresponding dual problem has a simpler structure and turns out to be well-suited for numerical purposes. For the resulting subproblems an efficient algorithmic approach in the infinite-dimensional setting based on the semismooth Newton method is proposed.
ISSN:1292-8119
1262-3377
DOI:10.1051/cocv/2018004