Duality results and regularization schemes for Prandtl-Reuss perfect plasticity
We consider the time-discretized problem of the quasi-static evolution problem in perfect plasticity posed in a non-reflexive Banach space. Based on a novel equivalent reformulation in a reflexive Banach space, the primal problem is characterized as a Fenchel dual problem of the classical incrementa...
Gespeichert in:
Veröffentlicht in: | ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2021, Vol.27, p.S1, Article 1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the time-discretized problem of the quasi-static evolution problem in perfect plasticity posed in a non-reflexive Banach space. Based on a novel equivalent reformulation in a reflexive Banach space, the primal problem is characterized as a Fenchel dual problem of the classical incremental stress problem. This allows to obtain necessary and sufficient optimality conditions for the time-discrete problems of perfect plasticity. Furthermore, the consistency of a primal-dual stabilization scheme is proven. As a consequence, not only stresses, but also displacements and strains are shown to converge to a solution of the original problem in a suitable topology. The corresponding dual problem has a simpler structure and turns out to be well-suited for numerical purposes. For the resulting subproblems an efficient algorithmic approach in the infinite-dimensional setting based on the semismooth Newton method is proposed. |
---|---|
ISSN: | 1292-8119 1262-3377 |
DOI: | 10.1051/cocv/2018004 |