Laser-Powered Co-Firing Process for Highly Efficient Si Solar Cells
This article presents a successful laser-powered co-firing process for highly efficient Si solar cells as a more compact and energy-efficient alternative to the conventional firing process in an infrared (IR) lamp-powered heat chamber. The best cell group reaches with laser firing only 0.1% abs lowe...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2021-03, Vol.11 (2), p.282-288 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a successful laser-powered co-firing process for highly efficient Si solar cells as a more compact and energy-efficient alternative to the conventional firing process in an infrared (IR) lamp-powered heat chamber. The best cell group reaches with laser firing only 0.1% abs lower cell efficiency compared to the best group with conventional firing, demonstrating the industrial potential of this laser firing technology. Adding the laser enhanced contact optimization (LECO) process after firing improves the cell efficiency for laser firing to the level of conventional firing, demonstrating the potential of the combination of the laser firing and the LECO process. |
---|---|
ISSN: | 2156-3381 2156-3403 |
DOI: | 10.1109/JPHOTOV.2020.3043856 |