Data-driven fault diagnosis method for the safe and stable operation of solid oxide fuel cells system
Solid oxide fuel cell system is complex with multiple variables strongly coupled. Once a fault occurs, if it cannot be found in time, the initial minor fault may slowly evolve and spread to subsequent components. Therefore, fault diagnosis is a promising approach to guarantee the stability of the sy...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2021-04, Vol.490, p.229561, Article 229561 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solid oxide fuel cell system is complex with multiple variables strongly coupled. Once a fault occurs, if it cannot be found in time, the initial minor fault may slowly evolve and spread to subsequent components. Therefore, fault diagnosis is a promising approach to guarantee the stability of the system. In this paper, the impact of air leakage and fuel starvation is investigated. To diagnose the two types of faults, a novel data-driven online fault diagnosis method based on principal component analysis and support vector machine is developed. Data comes from the entire stage of the solid oxide fuel cell system experiment. The results show that the proposed method can effectively identify the air leakage and fuel starvation fault in real time. Through comparison with traditional machine learning methods, this method shows higher accuracy and better generalization performance. Moreover, it combines prior knowledge and statistical characteristics to extract effective features, thereby reducing the calculation burden. Furthermore, with proper modifications, the proposed method can be extended to other types of solid oxide fuel cell system faults, which is significant in enhancing the reliability of the system.
•A data-driven fault diagnosis method is developed in SOFC system.•The impact of air leakage and fuel starvation in SOFC system is investigated.•Data comes from the entire stage of the SOFC system experimental platform.•Prior knowledge and statistical characteristics are combined to select features.•The performance of the proposed model is comprehensively evaluated and compared. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2021.229561 |