3D human nonalcoholic hepatic steatosis and fibrosis models
This study presents a simple and robust three-dimensional human hepatic tissue model to emulate steatotic and fibrotic conditions and provide an in vitro model for drug testing and mechanistic studies. Using a photolithographic biofabrication method with a photomask featuring hexagonal units, liver...
Gespeichert in:
Veröffentlicht in: | Bio-design and manufacturing 2021-06, Vol.4 (2), p.157-170 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents a simple and robust three-dimensional human hepatic tissue model to emulate steatotic and fibrotic conditions and provide an in vitro model for drug testing and mechanistic studies. Using a photolithographic biofabrication method with a photomask featuring hexagonal units, liver cells, including a human hepatic cell line (HepG2-C3A) and a human hepatic stellate cell line (LX-2) were embedded in gelatin methacryloyl hydrogel. Hepatic steatosis was induced by supraphysiological concentration of free fatty acids; hepatic fibrosis was induced by transforming growth factor-
β
1. Induction of steatosis was confirmed by Oil Red O and BODIPY staining and was inhibited with toyocamycin and obeticholic acid. Induction of fibrosis was confirmed by immunostaining for collagen type I and alpha smooth muscle actin and inhibited by rapamycin and curcumin treatment. This model was further preliminarily validated using primary human hepatocytes in a similar setup. These constructs provide a viable, biologically relevant, and higher throughput model of hepatic steatosis and fibrosis and may facilitate the study of the mechanisms of disease and testing of liver-directed drugs. |
---|---|
ISSN: | 2096-5524 2522-8552 |
DOI: | 10.1007/s42242-020-00121-4 |