Integrals of Motion in Time-periodic Hamiltonian Systems: The Case of the Mathieu Equation

We present an algorithm for constructing analytically approximate integrals of motion in simple time-periodic Hamiltonians of the form , where is a perturbation parameter. We apply our algorithm in a Hamiltonian system whose dynamics is governed by the Mathieu equation and examine in detail the orbi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2021, Vol.26 (1), p.89-104
Hauptverfasser: Tzemos, Athanasios C., Contopoulos, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an algorithm for constructing analytically approximate integrals of motion in simple time-periodic Hamiltonians of the form , where is a perturbation parameter. We apply our algorithm in a Hamiltonian system whose dynamics is governed by the Mathieu equation and examine in detail the orbits and their stroboscopic invariant curves for different values of . We find the values of beyond which the orbits escape to infinity and construct integrals which are expressed as series in the perturbation parameter and converge up to . In the absence of resonances the invariant curves are concentric ellipses which are approximated very well by our integrals. Finally, we construct an integral of motion which describes the hyperbolic stroboscopic invariant curve of a resonant case.
ISSN:1560-3547
1560-3547
1468-4845
DOI:10.1134/S1560354721010056