Phenetic and Molecular Diversity of Nitrogen Fixating Plant Growth Promoting Azotobacter Isolated from Semiarid Regions of India

In the present study, 24 Azotobacter strains were isolated from soils of different areas of southern Rajasthan and characterized at biochemical, functional, and molecular levels. The isolated Azotobacter strains were gram negative and cyst forming when viewed under the microscope. These strains were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2021-01, Vol.2021, p.1-9, Article 6686283
Hauptverfasser: Jain, Devendra, Sharma, Jyoti, Kaur, Gunnjeet, Bhojiya, Ali Asger, Chauhan, Surya, Sharma, Vimal, Suman, Archna, Mohanty, Santosh Ranjan, Maharjan, Elina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, 24 Azotobacter strains were isolated from soils of different areas of southern Rajasthan and characterized at biochemical, functional, and molecular levels. The isolated Azotobacter strains were gram negative and cyst forming when viewed under the microscope. These strains were also screened for their plant growth promoting activities and the ability of these isolates to survive under abiotic stress conditions viz. salt, pH, temperature, and drought stress. All the isolates showed IAA, siderophore, HCN, and ammonia production, whereas seven Azotobacter strains showed phosphate solubilization. Amplified Ribosomal DNA Restriction Analysis (ARDRA) revealed significant diversity among Azotobacter strains and the dendrogram obtained differentiated twenty-four of the strains into two major clusters at a similarity coefficient of 0.64. Qualitative and quantitative N2 fixation abilities of these strains were also detrained, and the amounts of acetylene reduced by Azotobacter strains were in the range of 1.31 to 846.56 nmol C2H4 mg protein−1 h−1. The strains showing high nitrogen fixation ability with multiple PGP activities were selected for further pot studies, and these Azotobacter strains significantly increased the various plant growth parameters of maize plantlets. Furthermore, the best Azotobacter isolates were subjected to 16S rRNA sequencing and confirmed their identities as Azotobacter sp. The indigenous Azotobacter strains with multiple PGP activities could be further used for commercial production.
ISSN:2314-6133
2314-6141
DOI:10.1155/2021/6686283