Large Enhancement of Critical Current in Superconducting Devices by Gate Voltage

Significant control over the properties of a high-carrier density superconductor via an applied electric field has been considered infeasible due to screening of the field over atomic length scales. Here, we demonstrate an enhancement of up to 30% in critical current in a back-gate tunable NbN micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-01, Vol.21 (1), p.216-221
Hauptverfasser: Rocci, Mirko, Suri, Dhavala, Kamra, Akashdeep, Vilela, Gilvania, Takamura, Yota, Nemes, Norbert M., Martinez, Jose L., Hernandez, Mar Garcia, Moodera, Jagadeesh S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Significant control over the properties of a high-carrier density superconductor via an applied electric field has been considered infeasible due to screening of the field over atomic length scales. Here, we demonstrate an enhancement of up to 30% in critical current in a back-gate tunable NbN micro- and nano superconducting bridges. Our suggested plausible mechanism of this enhancement in critical current based on surface nucleation and pinning of Abrikosov vortices is consistent with expectations and observations for type-II superconductor films with thicknesses comparable to their coherence length. Furthermore, we demonstrate an applied electric field-dependent infinite electroresistance and hysteretic resistance. Our work presents an electric field driven enhancement in the superconducting property in type-II superconductors which is a crucial step toward the understanding of field-effects on the fundamental properties of a superconductor and its exploitation for logic and memory applications in a superconductor-based low-dissipation digital computing paradigm.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.0c03547