An improved bound on the least common multiple of polynomial sequences
Cilleruelo a conjecturé que si f ϵ ℤ[x] de degré d ≥ 2 est irréductible sur les rationnels, alors log lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN quand N → ∞. Il l’a prouvé dans le cas d = 2. Très récemment, Maynard et Rudnick ont prouvé qu’il existe cd > 0 tel que log lcm((f(1), . . . , f(N)) ≳ c,d...
Gespeichert in:
Veröffentlicht in: | Journal de theorie des nombres de bordeaux 2020-01, Vol.32 (3), p.891-899 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 899 |
---|---|
container_issue | 3 |
container_start_page | 891 |
container_title | Journal de theorie des nombres de bordeaux |
container_volume | 32 |
creator | SAH, Ashwin |
description | Cilleruelo a conjecturé que si f ϵ ℤ[x] de degré d ≥ 2 est irréductible sur les rationnels, alors log lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN quand N → ∞. Il l’a prouvé dans le cas d = 2. Très récemment, Maynard et Rudnick ont prouvé qu’il existe cd
> 0 tel que log lcm((f(1), . . . , f(N)) ≳ c,d
N logN, et ont montré qu’on peut prendre
c
d
=
d
−
1
d
2
. Nous donnons une preuve alternative de ce résultat avec la constante améliorée cd
= 1. De plus, nous prouvons la minoration log rad lcm
(
f
(
1
)
,
…
,
f
(
N
)
)
≥
2
d
N
log
N
et proposons une conjecture plus forte affirmant que log rad lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN quand N → ∞.
Cilleruelo conjectured that if f ϵ ℤ[x] of degree d ≥ 2 is irreducible over the rationals, then log lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN as N → ∞. He proved it for the case d = 2. Very recently, Maynard and Rudnick proved there exists cd
> 0 with log lcm(f(1), . . . , f(N)) ≳ cd
N logN, and showed one can take
c
d
=
d
−
1
d
2
. We give an alternative proof of this result with the improved constant cd
= 1. We additionally prove the bound log rad lcm
(
f
(
1
)
,
…
,
f
(
N
)
)
≥
2
d
N
log
N
and make the stronger conjecture that log rad lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN as N → ∞. |
doi_str_mv | 10.5802/jtnb.1146 |
format | Article |
fullrecord | <record><control><sourceid>jstor_webof</sourceid><recordid>TN_cdi_webofscience_primary_000609361000010CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26974697</jstor_id><sourcerecordid>26974697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-e5afa30ed397e263ee41a0226be02529294ac1d9aa3862a52205fd8729c3555a3</originalsourceid><addsrcrecordid>eNqNkMFKxDAQhoMouK4efAAhV5Guk0mTNseluCoseNFzSdspdmmb2mSVfXtbVvbsYZhh-P5h-Bi7FbBSKeDjLvTFSohYn7EFCpFGqUrwnC0ExjpKYlCX7Mr7HQBKbdIF26x73nTD6L6p4oXb9xV3PQ-fxFuyPvDSdd206PZtaIaWuKv54NpD77rGttzT1576kvw1u6ht6-nmry_Zx-bpPXuJtm_Pr9l6G5WoRIhI2dpKoEqahFBLolhYQNQFASo0aGJbispYK1ONViGCqqs0QVNKpZSVS3Z_vFuOzvuR6nwYm86Oh1xAPgvIZwH5LGBi0yP7Q4WrfdnMn554ANBgpBbTAAKyJtjQuD6bFIQp-vD_6ETfHemdD248YahNEk8lfwHShHjW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An improved bound on the least common multiple of polynomial sequences</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>SAH, Ashwin</creator><creatorcontrib>SAH, Ashwin</creatorcontrib><description>Cilleruelo a conjecturé que si f ϵ ℤ[x] de degré d ≥ 2 est irréductible sur les rationnels, alors log lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN quand N → ∞. Il l’a prouvé dans le cas d = 2. Très récemment, Maynard et Rudnick ont prouvé qu’il existe cd
> 0 tel que log lcm((f(1), . . . , f(N)) ≳ c,d
N logN, et ont montré qu’on peut prendre
c
d
=
d
−
1
d
2
. Nous donnons une preuve alternative de ce résultat avec la constante améliorée cd
= 1. De plus, nous prouvons la minoration log rad lcm
(
f
(
1
)
,
…
,
f
(
N
)
)
≥
2
d
N
log
N
et proposons une conjecture plus forte affirmant que log rad lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN quand N → ∞.
Cilleruelo conjectured that if f ϵ ℤ[x] of degree d ≥ 2 is irreducible over the rationals, then log lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN as N → ∞. He proved it for the case d = 2. Very recently, Maynard and Rudnick proved there exists cd
> 0 with log lcm(f(1), . . . , f(N)) ≳ cd
N logN, and showed one can take
c
d
=
d
−
1
d
2
. We give an alternative proof of this result with the improved constant cd
= 1. We additionally prove the bound log rad lcm
(
f
(
1
)
,
…
,
f
(
N
)
)
≥
2
d
N
log
N
and make the stronger conjecture that log rad lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN as N → ∞.</description><identifier>ISSN: 1246-7405</identifier><identifier>ISSN: 2118-8572</identifier><identifier>EISSN: 2118-8572</identifier><identifier>DOI: 10.5802/jtnb.1146</identifier><language>eng</language><publisher>TALENCE: Société Arithmétique de Bordeaux</publisher><subject>Mathematics ; Physical Sciences ; Science & Technology</subject><ispartof>Journal de theorie des nombres de bordeaux, 2020-01, Vol.32 (3), p.891-899</ispartof><rights>Société Arithmétique de Bordeaux, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000609361000010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c251t-e5afa30ed397e263ee41a0226be02529294ac1d9aa3862a52205fd8729c3555a3</citedby><cites>FETCH-LOGICAL-c251t-e5afa30ed397e263ee41a0226be02529294ac1d9aa3862a52205fd8729c3555a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26974697$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26974697$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,834,27931,27932,28255,58024,58028,58257,58261</link.rule.ids></links><search><creatorcontrib>SAH, Ashwin</creatorcontrib><title>An improved bound on the least common multiple of polynomial sequences</title><title>Journal de theorie des nombres de bordeaux</title><addtitle>J THEOR NOMBR BORDX</addtitle><description>Cilleruelo a conjecturé que si f ϵ ℤ[x] de degré d ≥ 2 est irréductible sur les rationnels, alors log lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN quand N → ∞. Il l’a prouvé dans le cas d = 2. Très récemment, Maynard et Rudnick ont prouvé qu’il existe cd
> 0 tel que log lcm((f(1), . . . , f(N)) ≳ c,d
N logN, et ont montré qu’on peut prendre
c
d
=
d
−
1
d
2
. Nous donnons une preuve alternative de ce résultat avec la constante améliorée cd
= 1. De plus, nous prouvons la minoration log rad lcm
(
f
(
1
)
,
…
,
f
(
N
)
)
≥
2
d
N
log
N
et proposons une conjecture plus forte affirmant que log rad lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN quand N → ∞.
Cilleruelo conjectured that if f ϵ ℤ[x] of degree d ≥ 2 is irreducible over the rationals, then log lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN as N → ∞. He proved it for the case d = 2. Very recently, Maynard and Rudnick proved there exists cd
> 0 with log lcm(f(1), . . . , f(N)) ≳ cd
N logN, and showed one can take
c
d
=
d
−
1
d
2
. We give an alternative proof of this result with the improved constant cd
= 1. We additionally prove the bound log rad lcm
(
f
(
1
)
,
…
,
f
(
N
)
)
≥
2
d
N
log
N
and make the stronger conjecture that log rad lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN as N → ∞.</description><subject>Mathematics</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><issn>1246-7405</issn><issn>2118-8572</issn><issn>2118-8572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMFKxDAQhoMouK4efAAhV5Guk0mTNseluCoseNFzSdspdmmb2mSVfXtbVvbsYZhh-P5h-Bi7FbBSKeDjLvTFSohYn7EFCpFGqUrwnC0ExjpKYlCX7Mr7HQBKbdIF26x73nTD6L6p4oXb9xV3PQ-fxFuyPvDSdd206PZtaIaWuKv54NpD77rGttzT1576kvw1u6ht6-nmry_Zx-bpPXuJtm_Pr9l6G5WoRIhI2dpKoEqahFBLolhYQNQFASo0aGJbispYK1ONViGCqqs0QVNKpZSVS3Z_vFuOzvuR6nwYm86Oh1xAPgvIZwH5LGBi0yP7Q4WrfdnMn554ANBgpBbTAAKyJtjQuD6bFIQp-vD_6ETfHemdD248YahNEk8lfwHShHjW</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>SAH, Ashwin</creator><general>Société Arithmétique de Bordeaux</general><general>Univ Bordeaux, Inst Mathematiques Bordeaux</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200101</creationdate><title>An improved bound on the least common multiple of polynomial sequences</title><author>SAH, Ashwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-e5afa30ed397e263ee41a0226be02529294ac1d9aa3862a52205fd8729c3555a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Mathematics</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SAH, Ashwin</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Journal de theorie des nombres de bordeaux</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAH, Ashwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved bound on the least common multiple of polynomial sequences</atitle><jtitle>Journal de theorie des nombres de bordeaux</jtitle><stitle>J THEOR NOMBR BORDX</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><spage>891</spage><epage>899</epage><pages>891-899</pages><issn>1246-7405</issn><issn>2118-8572</issn><eissn>2118-8572</eissn><abstract>Cilleruelo a conjecturé que si f ϵ ℤ[x] de degré d ≥ 2 est irréductible sur les rationnels, alors log lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN quand N → ∞. Il l’a prouvé dans le cas d = 2. Très récemment, Maynard et Rudnick ont prouvé qu’il existe cd
> 0 tel que log lcm((f(1), . . . , f(N)) ≳ c,d
N logN, et ont montré qu’on peut prendre
c
d
=
d
−
1
d
2
. Nous donnons une preuve alternative de ce résultat avec la constante améliorée cd
= 1. De plus, nous prouvons la minoration log rad lcm
(
f
(
1
)
,
…
,
f
(
N
)
)
≥
2
d
N
log
N
et proposons une conjecture plus forte affirmant que log rad lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN quand N → ∞.
Cilleruelo conjectured that if f ϵ ℤ[x] of degree d ≥ 2 is irreducible over the rationals, then log lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN as N → ∞. He proved it for the case d = 2. Very recently, Maynard and Rudnick proved there exists cd
> 0 with log lcm(f(1), . . . , f(N)) ≳ cd
N logN, and showed one can take
c
d
=
d
−
1
d
2
. We give an alternative proof of this result with the improved constant cd
= 1. We additionally prove the bound log rad lcm
(
f
(
1
)
,
…
,
f
(
N
)
)
≥
2
d
N
log
N
and make the stronger conjecture that log rad lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN as N → ∞.</abstract><cop>TALENCE</cop><pub>Société Arithmétique de Bordeaux</pub><doi>10.5802/jtnb.1146</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1246-7405 |
ispartof | Journal de theorie des nombres de bordeaux, 2020-01, Vol.32 (3), p.891-899 |
issn | 1246-7405 2118-8572 2118-8572 |
language | eng |
recordid | cdi_webofscience_primary_000609361000010CitationCount |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; JSTOR; EZB Electronic Journals Library |
subjects | Mathematics Physical Sciences Science & Technology |
title | An improved bound on the least common multiple of polynomial sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T17%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20bound%20on%20the%20least%20common%20multiple%20of%20polynomial%20sequences&rft.jtitle=Journal%20de%20theorie%20des%20nombres%20de%20bordeaux&rft.au=SAH,%20Ashwin&rft.date=2020-01-01&rft.volume=32&rft.issue=3&rft.spage=891&rft.epage=899&rft.pages=891-899&rft.issn=1246-7405&rft.eissn=2118-8572&rft_id=info:doi/10.5802/jtnb.1146&rft_dat=%3Cjstor_webof%3E26974697%3C/jstor_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26974697&rfr_iscdi=true |