A new lectin from the floral capitula of Egletes viscosa (EgviL): Biochemical and biophysical characterization and cytotoxicity to human cancer cells
Egletes viscosa is a plant with therapeutic value due to its antibacterial, antinociceptive and gastroprotective properties. This study aimed to purify, characterize, and evaluate the cytotoxicity of a lectin (EgviL) from the floral capitula of E. viscosa. The lectin was isolated from saline extract...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2021-01, Vol.168, p.676-685 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Egletes viscosa is a plant with therapeutic value due to its antibacterial, antinociceptive and gastroprotective properties. This study aimed to purify, characterize, and evaluate the cytotoxicity of a lectin (EgviL) from the floral capitula of E. viscosa. The lectin was isolated from saline extract through precipitation with ammonium sulfate followed by Sephadex G-75 chromatography. The molecular mass and isoelectric point (pI) of EgviL were determined as well as its temperature and pH stability. Physical–chemical parameters of interaction between EgviL and carbohydrates were investigated by fluorescence quenching and 1H nuclear magnetic resonance (NMR). Cytotoxicity was investigated against human peripheral blood mononuclear cells (PBMCs) and neoplastic cells. EgviL (28.8 kDa, pI 5.4) showed hemagglutinating activity stable towards heating until 60 °C and at the pH range 5.0–7.0. This lectin is able to interact through hydrophobic and electrostatic bonds with galactose and glucose, respectively. EgviL reduced the viability of PBMCs only at the highest concentration tested (100 μg/mL) while was toxic to Jurkat E6–1 cells with IC50 of 24.1 μg/mL,inducing apoptosis. In summary, EgviL is a galactose/glucose-binding protein with acidic character, stable to heating and with cytotoxic effect on leukemic cells. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2020.11.124 |