Real-time identified chaotic plants using neural enhanced learning machine technique
Purpose This paper aims to propose a new neural-based enhanced extreme learning machine (EELM) algorithm, used as an online adaptive estimation model, regarding undetermined system dynamics and containing internal/external perturbations. Design/methodology/approach The EELM structure bases on the si...
Gespeichert in:
Veröffentlicht in: | Engineering computations 2021-07, Vol.38 (6), p.2810-2832 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
This paper aims to propose a new neural-based enhanced extreme learning machine (EELM) algorithm, used as an online adaptive estimation model, regarding undetermined system dynamics and containing internal/external perturbations.
Design/methodology/approach
The EELM structure bases on the single layer feed-forward neural (SLFN) model in which the hidden weighting coefficients are initiated in random and the weighting outputs of the SLFN are online modified using an online adaptive rule implemented from Lyapunov stability concept.
Findings
Four different benchmark uncertain chaotic system tests have been satisfactorily investigated for demonstrating the superiority of proposed EELM technique.
Originality/value
Authors confirm that this manuscript is original. |
---|---|
ISSN: | 0264-4401 1758-7077 |
DOI: | 10.1108/EC-01-2020-0049 |