Real-time identified chaotic plants using neural enhanced learning machine technique

Purpose This paper aims to propose a new neural-based enhanced extreme learning machine (EELM) algorithm, used as an online adaptive estimation model, regarding undetermined system dynamics and containing internal/external perturbations. Design/methodology/approach The EELM structure bases on the si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering computations 2021-07, Vol.38 (6), p.2810-2832
1. Verfasser: Anh, Ho Pham Huy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose This paper aims to propose a new neural-based enhanced extreme learning machine (EELM) algorithm, used as an online adaptive estimation model, regarding undetermined system dynamics and containing internal/external perturbations. Design/methodology/approach The EELM structure bases on the single layer feed-forward neural (SLFN) model in which the hidden weighting coefficients are initiated in random and the weighting outputs of the SLFN are online modified using an online adaptive rule implemented from Lyapunov stability concept. Findings Four different benchmark uncertain chaotic system tests have been satisfactorily investigated for demonstrating the superiority of proposed EELM technique. Originality/value Authors confirm that this manuscript is original.
ISSN:0264-4401
1758-7077
DOI:10.1108/EC-01-2020-0049