Techno-economic analysis of a sCO(2) power plant for waste heat recovery in steel industry

Industrial facilities release a large amount of heat as a by-product of their processes. To improve environmental performance and increase process profitability, a portion of the waste heat can be recovered and employed for power generation by recovery systems. Supercritical carbon dioxide (sCO(2))...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy reports 2020-12, Vol.6, p.298-304
Hauptverfasser: Biondi, Matteo, Giovannelli, Ambra, Di Lorenzo, Giuseppina, Salvini, Coriolano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Industrial facilities release a large amount of heat as a by-product of their processes. To improve environmental performance and increase process profitability, a portion of the waste heat can be recovered and employed for power generation by recovery systems. Supercritical carbon dioxide (sCO(2)) plants are emerging as potential alternatives to the well-established technologies for waste heat recovery (WHR) power generation in heavy industry. This paper offers a preliminary techno-economic analysis of a waste heat-to-power system based on a sCO(2) closed-loop for a heavy-industrial process. By conducting a parametric investigation on the WHR sCO(2) system's key design parameters, a number of preferable configurations from a thermodynamic perspective were initially identified; they were subsequently analyzed from the economic point of view in terms of net present value (NPV) and pay-back period (PBP). The privileged WHR system configuration achieved an overall efficiency of 30.4% and a power output of 21.6 kWe, providing an NPV of almost US k$ 376 with a PBP of approximately 4.5 years. (C) 2020 The Authors. Published by Elsevier Ltd.
ISSN:2352-4847
2352-4847
DOI:10.1016/j.egyr.2020.11.147