CuO/PbO Nanocomposite: Preparation and Catalysis for Ammonium Perchlorate Thermal Decomposition
In this present article, we reported a facile and efficient milling method to prepare a series of CuO/PbO nanocomposite metal oxides (CuO/PbO NMOs), with CuO/PbO molar ratios of 1:2, 1:1, 1:0.5, and 1:0.25 as a potential catalyst to catalyze the thermal decomposition of ammonium perchlorate (AP). Th...
Gespeichert in:
Veröffentlicht in: | ACS omega 2020-12, Vol.5 (50), p.32667-32676 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this present article, we reported a facile and efficient milling method to prepare a series of CuO/PbO nanocomposite metal oxides (CuO/PbO NMOs), with CuO/PbO molar ratios of 1:2, 1:1, 1:0.5, and 1:0.25 as a potential catalyst to catalyze the thermal decomposition of ammonium perchlorate (AP). The obtained CuO/PbO NMOs were systematically characterized. X-ray diffraction (XRD), X-ray energy-dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS) analyses showed that the characteristic peaks of CuO/PbO NMOs were almost the superposition of nano CuO and nano PbO, while few new weak peaks were observed resulting from the lattice defects and new structural arrangements and chemical bonds between nano CuO and nano PbO during a high-energy grinding process. Scanning electron microscopy (SEM) and transition electron microscopy (TEM) observations exhibited that the particle sizes of the CuO/PbO NMOs were distributed in the range of 10–20 nm. Thermogravimetric (TG) analysis coupled with differential scanning calorimetric (DSC) techniques verified that CuO/PbO NMOs with a CuO/PbO molar ratio of 1:1 presented the best catalytic effect for AP thermal decomposition among the other CuO/PbO NMOs, as well as the single nano CuO and nano PbO. The outstanding catalytic performance is mainly reflected as follows: shifting the peak temperature of AP in high-temperature decomposition stages from 441.3 to 347.6 °C, increasing the decomposition heat of AP from 941 to 1711 J/g, and decreasing the Gibbs free energy of AP from 199.8 to 172.1 kJ/mol, supporting the existence of a synergistic catalytic effect between nano CuO and nano PbO. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.0c05050 |