Research of Particle Motion in a Two-Stage Slurry Transport Pump for Deep-Ocean Mining by the CFD-DEM Method

The slurry transport pump is the key equipment of deep-ocean mining systems. The motion law of coarse particles in the pump is not clear enough. In this paper, a hydraulic model of a laboratory-scale two-stage slurry transport pump is constructed, and the motion characteristics of coarse particles i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-12, Vol.13 (24), p.6711, Article 6711
Hauptverfasser: Su, Xianghui, Tang, Zhenji, Li, Yi, Zhu, Zuchao, Mianowicz, Kamila, Balaz, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The slurry transport pump is the key equipment of deep-ocean mining systems. The motion law of coarse particles in the pump is not clear enough. In this paper, a hydraulic model of a laboratory-scale two-stage slurry transport pump is constructed, and the motion characteristics of coarse particles in the pump are numerically studied by using the computational fluid dynamics-discrete element method (CFD-DEM) method. The performance curve of the pump is obtained by experimental measurement, and the reliability of the calculated results is verified. Due to the application of the amplification flow rate design method, the optimum efficiency point of the pump is shifted to the large flow rate condition. Differences in particle swarm within two stages are compared. The position distribution, velocity variation and trajectory of particles in the impeller and bowl diffuser are studied in detail. The velocity of particles leaving the impeller depends on whether they collide with the impeller blade. The motion of particles in the bowl diffuser is divided into three periods. Collision between particles and blades in the bowl diffuser not only leads to energy loss but also gradually transforms the circumferential velocity of particles into axial velocity in the second period. This work can provide a reference for the study of wear and blockage prevention of slurry transport pumps.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13246711