Karyotype evolution and flexible (conventional versus inverted) meiosis in insects with holocentric chromosomes: a case study based on Polyommatus butterflies

The Polyommatus butterflies have holocentric chromosomes, which are characterized by kinetic activity distributed along the entire chromosome length, and the highest range of haploid chromosome numbers (n) known within a single eukaryotic genus (from n = 10 to n = 226). Previous analyses have shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological journal of the Linnean Society 2020-08, Vol.130 (4), p.683-699
Hauptverfasser: Lukhtanov, Vladimir A., Dantchenko, Alexander, Khakimov, Fayzali R., Sharafutdinov, Damir, Pazhenkova, Elena A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Polyommatus butterflies have holocentric chromosomes, which are characterized by kinetic activity distributed along the entire chromosome length, and the highest range of haploid chromosome numbers (n) known within a single eukaryotic genus (from n = 10 to n = 226). Previous analyses have shown that these numbers most likely evolved gradually from an ancestral karyotype, in accordance with the Brownian motion model of chromosome change accumulation. Here we studied chromosome sets within a monophyletic group of previously non-karyotyped Polyommatus species. We demonstrate that these species have a limited interspecific chromosome number variation from n = 16 to n = 25, which is consistent with the Brownian motion model prediction. We also found intra- and interpopulation variation in the chromosome numbers. These findings support the model of karyotype evolution through the gradual accumulation of neutral or weakly underdominant rearrangements that can persist in the heterozygous state within a population. For Polyommatus poseidonides we report the phenomenon of flexible meiosis in which the chromosome multivalents are able to undergo either conventional or inverted meiosis within the same individual. We hypothesise that the ability to invert the order of the meiotic events may be adaptive and can facilitate proper chromosome segregation in chromosomal heterozygotes, thus promoting rapid karyotype evolution.
ISSN:0024-4066
1095-8312
DOI:10.1093/biolinnean/blaa077