High-capacitance polyurethane ionogels for low-voltage operated organic transistors and pressure sensors

In this paper, we report a facile method to fabricate high-capacitance polyurethane ionogel-based bilayer dielectrics for low-voltage and high-performance pressure-sensitive top-gate organic thin-film transistors (OTFTs). These elastomeric bilayer dielectrics are made of a neat polyurethane top laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-12, Vol.8 (47), p.1717-17113
Hauptverfasser: Tabi, Grace Dansoa, Kim, Joo Sung, Nketia-Yawson, Benjamin, Kim, Do Hwan, Noh, Young-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we report a facile method to fabricate high-capacitance polyurethane ionogel-based bilayer dielectrics for low-voltage and high-performance pressure-sensitive top-gate organic thin-film transistors (OTFTs). These elastomeric bilayer dielectrics are made of a neat polyurethane top layer and a bottom ionogel layer composed of a polyurethane-ionic liquid gel prepared by a simple, cost-effective dissolution process. Utilizing the various formulated ionogels with different ionic contents, controlled high capacitance values between 10 and 30 μF cm −2 are achieved, which is attributed to the formation of a combined electric double layer and dipole polarization in the ionogel/polyurethane layers, respectively. Remarkably increased hole mobilities up to ∼2 cm 2 V −1 s −1 and a low operation voltage less than 6 V are achieved with a poly(9,9-dioctylfuorene- co -bithiophene) (F8T2) liquid-crystalline polymer semiconductor and by optimizing the ionic content at the bottom ionogel layer of the OTFTs. Additionally, the optimized F8T2 OTFTs show a low threshold voltage of −2 V, a high on/off ratio of ∼10 5 , and excellent operational stability. Finally, we investigate the pressure sensing properties of the OTFTs by applying pressure on top of the polyurethane ionogel-based bilayer gate dielectric. The OTFTs showed a pressure sensitivity of 0.12 kPa −1 over a wide pressure range. This study demonstrates that employing a thin polyurethane overlayer on an ionogel dielectric is a simple and effective approach to enhance the interface contact for both printing and thermal top-gate electrode deposition for high-performance ionogel-based OTFTs and pressure sensors. A facile method to fabricate high-capacitance stretchable polyurethane ionogels is reported for organic transistor and pressure sensor applications, measuring remarkable mobility of ∼2 cm 2 V −1 s −1 and a high-pressure sensitivity of 0.12 kPa −1 .
ISSN:2050-7526
2050-7534
DOI:10.1039/d0tc02364g