A Lite Distributed Semantic Communication System for Internet of Things
The rapid development of deep learning (DL) and widespread applications of Internet-of-Things (IoT) have made the devices smarter than before, and enabled them to perform more intelligent tasks. However, it is challenging for any IoT device to train and run DL models independently due to its limited...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2021-01, Vol.39 (1), p.142-153 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rapid development of deep learning (DL) and widespread applications of Internet-of-Things (IoT) have made the devices smarter than before, and enabled them to perform more intelligent tasks. However, it is challenging for any IoT device to train and run DL models independently due to its limited computing capability. In this paper, we consider an IoT network where the cloud/edge platform performs the DL based semantic communication (DeepSC) model training and updating while IoT devices perform data collection and transmission based on the trained model. To make it affordable for IoT devices, we propose a lite distributed semantic communication system based on DL, named L-DeepSC, for text transmission with low complexity, where the data transmission from the IoT devices to the cloud/edge works at the semantic level to improve transmission efficiency. Particularly, by pruning the model redundancy and lowering the weight resolution, the L-DeepSC becomes affordable for IoT devices and the bandwidth required for model weight transmission between IoT devices and the cloud/edge is reduced significantly. Through analyzing the effects of fading channels in forward-propagation and back-propagation during the training of L-DeepSC, we develop a channel state information (CSI) aided training processing to decrease the effects of fading channels on transmission. Meanwhile, we tailor the semantic constellation to make it implementable on capacity-limited IoT devices. Simulation demonstrates that the proposed L-DeepSC achieves competitive performance compared with traditional methods, especially in the low signal-to-noise (SNR) region. In particular, while it can reach as large as 40\times compression ratio without performance degradation. |
---|---|
ISSN: | 0733-8716 1558-0008 |
DOI: | 10.1109/JSAC.2020.3036968 |