Detecting Citrus in Orchard Environment by Using Improved YOLOv4

Real-time detection of fruits in orchard environments is one of crucial techniques for many precision agriculture applications, including yield estimation and automatic harvesting. Due to the complex conditions, such as different growth periods and occlusion among leaves and fruits, detecting fruits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2020, Vol.2020 (2020), p.1-13, Article 8859237
Hauptverfasser: Li, Guo, Liu, Binghao, Lu, Shenglian, Chen, Wenkang, Qian, Tingting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Real-time detection of fruits in orchard environments is one of crucial techniques for many precision agriculture applications, including yield estimation and automatic harvesting. Due to the complex conditions, such as different growth periods and occlusion among leaves and fruits, detecting fruits in natural environments is a considerable challenge. A rapid citrus recognition method by improving the state-of-the-art You Only Look Once version 4 (YOLOv4) detector is proposed in this paper. Kinect V2 camera was used to collect RGB images of citrus trees. The Canopy algorithm and the K-Means++ algorithm were then used to automatically select the number and size of the prior frames from these RGB images. An improved YOLOv4 network structure was proposed to better detect smaller citrus under complex backgrounds. Finally, the trained network model was used for sparse training, pruning unimportant channels or network layers in the network, and fine-tuning the parameters of the pruned model to restore some of the recognition accuracy. The experimental results show that the improved YOLOv4 detector works well for detecting different growth periods of citrus in a natural environment, with an average increase in accuracy of 3.15% (from 92.89% to 96.04%). This result is superior to the original YOLOv4, YOLOv3, and Faster R-CNN. The average detection time of this model is 0.06 s per frame at 1920 × 1080 resolution. The proposed method is suitable for the rapid detection of the type and location of citrus in natural environments and can be applied to the application of citrus picking and yield evaluation in actual orchards.
ISSN:1058-9244
1875-919X
DOI:10.1155/2020/8859237