On-chip broadband nonreciprocal light storage
Breaking the symmetry between forward- and backward-propagating optical modes is of fundamental scientific interest and enables crucial functionalities, such as isolators, circulators, and duplex communication systems. Although there has been progress in achieving optical isolation on-chip, integrat...
Gespeichert in:
Veröffentlicht in: | Nanophotonics (Berlin, Germany) Germany), 2021-01, Vol.10 (1), p.75-82 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breaking the symmetry between forward- and backward-propagating optical modes is of fundamental scientific interest and enables crucial functionalities, such as isolators, circulators, and duplex communication systems. Although there has been progress in achieving optical isolation on-chip, integrated broadband nonreciprocal signal processing functionalities that enable transmitting and receiving via the same low-loss planar waveguide, without altering the frequency or mode of the signal, remain elusive. Here, we demonstrate a nonreciprocal delay scheme based on the unidirectional transfer of optical data pulses to acoustic waves in a chip-based integration platform. We experimentally demonstrate that this scheme is not impacted by simultaneously counterpropagating optical signals. Furthermore, we achieve a bandwidth more than an order of magnitude broader than the intrinsic optoacoustic linewidth, linear operation for a wide range of signal powers, and importantly, show that this scheme is wavelength preserving and avoids complicated multimode structures. |
---|---|
ISSN: | 2192-8606 2192-8614 |
DOI: | 10.1515/nanoph-2020-0371 |