A distributed real-time control algorithm for energy storage sharing
In this paper, energy storage sharing among a group of cooperative households with integrated renewable generations in a grid-connected microgrid in the presence of dynamic electricity pricing is studied. In such a microgrid, a group of households, who are willing to cooperatively operate a shared e...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2021-01, Vol.230, p.110478, Article 110478 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, energy storage sharing among a group of cooperative households with integrated renewable generations in a grid-connected microgrid in the presence of dynamic electricity pricing is studied. In such a microgrid, a group of households, who are willing to cooperatively operate a shared energy storage system (ESS) via a central coordinator, aims to minimize their long term time-averaged costs, by jointly taking into account the operational constraints of the shared energy storage, the stochastic solar energy generations and time-varying load requests from all households, as well as the fluctuating electricity prices. We formulate this energy management problem, which comprises storage management and load control, as a constrained stochastic programming problem. Based on the Lyapunov theory, a distributed real-time sharing control algorithm is proposed to provide a suboptimal solution for the constrained stochastic programming problem without requiring any system statistics. The proposed distributed real-time sharing control algorithm, in which each household independently solves a simple convex optimization problem in each time slot, can quickly adapt to the system dynamics. The performance of the proposed low-complexity sharing control algorithm is evaluated via both theoretical analysis and numerical simulations. By comparing with a greedy sharing algorithm and the distributed ESSs case, it is shown that the proposed distributed sharing control algorithm outperforms in terms of both cost saving and renewable energy generation utilization. |
---|---|
ISSN: | 0378-7788 1872-6178 |
DOI: | 10.1016/j.enbuild.2020.110478 |