Genomics models in radiotherapy: From mechanistic to machine learning

Machine learning (ML) provides a broad framework for addressing high‐dimensional prediction problems in classification and regression. While ML is often applied for imaging problems in medical physics, there are many efforts to apply these principles to biological data toward questions of radiation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2020-06, Vol.47 (5), p.e203-e217
Hauptverfasser: Kang, John, Coates, James T., Strawderman, Robert L., Rosenstein, Barry S., Kerns, Sarah L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning (ML) provides a broad framework for addressing high‐dimensional prediction problems in classification and regression. While ML is often applied for imaging problems in medical physics, there are many efforts to apply these principles to biological data toward questions of radiation biology. Here, we provide a review of radiogenomics modeling frameworks and efforts toward genomically guided radiotherapy. We first discuss medical oncology efforts to develop precision biomarkers. We next discuss similar efforts to create clinical assays for normal tissue or tumor radiosensitivity. We then discuss modeling frameworks for radiosensitivity and the evolution of ML to create predictive models for radiogenomics.
ISSN:0094-2405
2473-4209
DOI:10.1002/mp.13751