Clustering-Based Penalty Signal Design for Flexibility Utilization

As the penetration level of renewable energy sources (RES) increases, the associated technical challenges in the power systems rise. Enhancing the utilization of energy flexibility is known to be the main key to overcome the load-supply balance challenge caused by RES. In this regard, the trend is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.208850-208860
Hauptverfasser: Rosin, Argo, Ahmadiahangar, Roya, Azizi, Elnaz, Sahoo, Subham, Vinnikov, Dmitri, Blaabjerg, Frede, Dragicevic, Tomislav, Bolouki, Sadegh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the penetration level of renewable energy sources (RES) increases, the associated technical challenges in the power systems rise. Enhancing the utilization of energy flexibility is known to be the main key to overcome the load-supply balance challenge caused by RES. In this regard, the trend is toward the utilization of demand-side flexibility. Meanwhile, individual penalty signals positively affect the utilization of available flexibility from the demand-side. Previous studies in this field are based on designing penalty signals according to electricity price and regardless of the demand situation. However, designing and implementing a proper penalty signal with finite amplitude requires analyzing large datasets of load, storage and generation. Therefore, to fill this gap in designing a proper penalty signal we have proposed a novel approach in which, clustering is used to overcome the complexity of analyzing large datasets. The main goal of the proposed method is to utilize energy flexibility from responsive batteries according to a request from the aggregator without violating the consumers' privacy and comfort level. Therefore, aggregator's attainable load and generation datasets are used in the case studies to maintain the practicality of the proposed method. Simulation results show the proposed penalty signal designing method effectively increases the available flexibility of microgrids.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3038822