High-Capacity Layered Magnesium Vanadate with Concentrated Gel Electrolyte toward High-Performance and Wide-Temperature Zinc-Ion Battery

Aqueous zinc-ion batteries (ZIBs) have emerged as the most promising alternative energy storage system, but the development of a suitable cathode and the issues of Zn anodes have remained challenging. Herein, an effective strategy of high-capacity layered Mg0.1V2O5·H2O (MgVO) nanobelts together with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-11, Vol.14 (11), p.15776-15785
Hauptverfasser: Deng, Wenjun, Zhou, Zhuqing, Li, Yibo, Zhang, Man, Yuan, Xinran, Hu, Jun, Li, Zhengang, Li, Chang, Li, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aqueous zinc-ion batteries (ZIBs) have emerged as the most promising alternative energy storage system, but the development of a suitable cathode and the issues of Zn anodes have remained challenging. Herein, an effective strategy of high-capacity layered Mg0.1V2O5·H2O (MgVO) nanobelts together with a concentrated 3 M Zn­(CF3SO3)2 polyacrylamide gel electrolyte was proposed to achieve a durable and practical ZIB system. By adopting the designed concentrated gel electrolyte which not only inherits the high-voltage window and wide operating temperature of the concentrated electrolyte but also addresses the Zn dendrite formation problem, the prepared cathode exhibits an ultrahigh capacity of 470 mAh g–1 and a high rate capability of 345 mAh g–1 at 5.0 A g–1, and the assembled quasi-solid-state ZIBs achieve 95% capacity retention over 3000 cycles as well as a wide operating temperature from −30 to 80 °C, demonstrating a promising prospect for large-scale energy storage. In situ X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis (TGA) investigations also demonstrate a complex reaction mechanism for this cathode involving the (de)­insertion of Zn2+, H+, and water molecules during cycling. The water molecules will reinsert into the interlayer and act as “pillars” to stabilize the host structure when Zn2+ is fully extracted.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.0c06834